ترغب بنشر مسار تعليمي؟ اضغط هنا

Does the Fine Structure Constant Really Vary in Time?

58   0   0.0 ( 0 )
 نشر من قبل Massimo Stiavelli
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss how laboratory experiments can be used to place constraints on possible variations of the fine structure constant alpha in the observationally relevant redshift interval z ~= 0 - 5, within a rather general theoretical framework. We find a worst case upper limit for Delta alpha / alpha of 8 x 10^-6 for z <= 5 and Delta alpha / alpha of 0.9 x 10^-6 for z <= 1.6. The derived limits are at variance with the recent findings by Webb et al. (1998), who claim an observed variation of Delta alpha/alpha = -2.6 +- 0.4 x 10^-5 at 1<z<1.6.



قيم البحث

اقرأ أيضاً

New photometric series of BE Lyncis are presented. With template curve fitting we re-determined the $O-C$ for BE Lyncis. The phase shift diagram is apparently constant, disproving the suspected period variations of BE Lyn.
65 - R. W. Kuhne 1999
Webb et al. presented preliminary evidence for a time-varying fine-structure constant. We show Tellers formula for this variation to be ruled out within the Einstein-de Sitter universe, however, it is compatible with cosmologies which require a large cosmological constant.
60 - D.F. Mota 2004
This thesis describes a detailed investigation of the effects of matter inhomogeneities on the cosmological evolution of the fine structure constant using the Bekenstein-Sandvik-Barrow-Magueijo (BSBM) theory. We briefly review the observational and t heoretical motivations to this work, together with the standard cosmological model. We start by analysing the phase space of the system of equations that describes a time-varying fine structure constant, in a homogeneous and isotropic background universe. We classify all the possible behaviours of the fine structure constant in ever-expanding universes and find exact solutions for it. Using a gauge-invariant formalism, we derive and solve the linearly perturbed Einstein cosmological equations for the BSBM theory. We calculate the time evolution of inhomogeneous perturbations of the fine structure constant on small and large scales with respect to the Hubble radius. We also investigate, in the non-linear regime of the large scale structure formation, the space-time evolution of the fine structure constant, inside evolving spherical overdensities. The dependence on the dark-energy equation of state is also analysed. Finally, we analyse the effects of the coupling of the field (that drives the variations in the fine structure constant) to the matter fields, on the space and time evolution of the fine structure constant.
Recent measurements of a peak in the angular power spectrum of the cosmic microwave background appear to suggest that geometry of the universe is close to being flat. But if other accepted indicators of cosmological parameters are also correct then t he best fit model is marginally closed, with the peak in the spectrum at larger scales than in a flat universe. Such observations can be reconciled with a flat universe if the fine structure constant had a lower value at earlier times, which would delay the recombination of electrons and protons and also act to suppress secondary oscillations as observed. We discuss evidence for a few percent increase in the fine structure constant between the time of recombination and the present.
SubHalo Abundance Matching (SHAM) assumes that one (sub)halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub)halo such as its luminosity or stellar mass. This assumption implies tha t the dependence of Galaxy Luminosity Functions (GLFs) and the Galaxy Stellar Mass Function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from an SDSS sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g-r color for all galaxies and central galaxies, although it better reproduces the color dependence on environmental density of satellite galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا