ﻻ يوجد ملخص باللغة العربية
We have obtained optical CCD spectroscopy along the major axes of 22 nearby spiral galaxies of Sb and Sc types in order to analyze their rotation curves. By subtracting the stellar continuum emission, we have obtained position velocity (PV) diagrams of the H alpha and [NII] lines. We point out that the H alphaline is often superposed by a broad stellar absorption feature (Balmer wind) in the nuclear regions, and, therefore, the [NII] line is a better tracer of kinematics in the central a few hundred pc regions. By applying the envelope-tracing technique to the H alpha and [NII] PV diagrams, we have derived nucleus-to-disk rotation curves of the observed galaxies. The rotation curves rise steeply within the central a few hundred parsecs, indicating rapidly rotating nuclear disk and mass concentration near the nucleus. [For more rotation curves : http://www.ioa.s.u-tokyo.ac.jp/]
A homogeneous sample of ~2200 low redshift disk galaxies with both high sensitivity long-slit optical spectroscopy and detailed I-band photometry is used to construct average, or template, rotation curves in separate luminosity classes, spanning 6 ma
We present an investigation of the structure of the emission line region in a sample of 12 single-peaked Active Galactic Nuclei (AGNs). Using the high resolution H-beta and H-alpha line profiles observed with the Isaac Newton Telescope (La Palma) we
We present rotation curves for 19, mostly luminous, early-type disk galaxies. Rotation velocities are measured from a combination of HI velocity fields and long-slit optical emission line spectra along the major axis. We find that the rotation curves
After explaining the motivation for this article, I briefly recapitulate the methods used to determine, somewhat coarsely, the rotation curves of our Milky Way Galaxy and other spiral galaxies, especially in their outer parts, and the results of appl
We use N-body hydrodynamical simulations to study the structure of disks in triaxial potentials resembling CDM halos. Our analysis focuses on the accuracy of the dark mass distribution inferred from rotation curves derived from simulated long-slit sp