ترغب بنشر مسار تعليمي؟ اضغط هنا

KPD 0422+5421: A New Short Period Subdwarf B/White Dwarf Binary

64   0   0.0 ( 0 )
 نشر من قبل Jerome A. Orosz
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Koen -




اسأل ChatGPT حول البحث

The sdB star KPD 0422+5421 was discovered to be a single-lined spectroscopic binary with a period of P=0.0901795 +/- (3times 10^{-7}) days (2 hours, 10 minutes). The U and B light curves display an ellipsoidal modulation with amplitudes of about 0.02 magnitudes. The sdB star contributes nearly all of the observed flux. This and the absence of any reflection effect suggest that the unseen companion star is small (i.e. R_comp ~ 0.01 solar radii) and therefore degenerate. We modeled the U and B light curves and derived i = 78.05 +/- 0.50 degrees and a mass ratio of q = M_comp/M_sdB = 0.87 +/- 0.15. The sdB star fills 69% of its Roche lobe. These quantities may be combined with the mass function of the companion (f(M) = 0.126 +/- 0.028 solar masses) to derive M_sdB = 0.72 +/- 0.26 solar masses and M_comp = 0.62 +/- 0.18 solar masses. We used model spectra to derive the effective temperature, surface gravity, and helium abundance of the sdB star. We found T_eff = 25,000 +/- 1500K, log g = 5.4 +/- 0.1, and [He/H] = -1.0. With a period of 2 hours and 10 minutes, KPD 0422+5421 has one of the shortest known orbital periods of a detached binary. This system is also one of only a few known binaries which contain a subdwarf B star and a white dwarf. Thus KPD 0422+5421 represents a relatively unobserved, and short-lived, stage of binary star evolution.

قيم البحث

اقرأ أيضاً

163 - Jerome A. Orosz , 1999
We report additional photometric CCD observations of KPD 0422+5421, a binary with an orbital period of 2.16 hours which contains a subdwarf B star (sdB) and a white dwarf. There are two main results of this work. First, the light curve of KPD 0422+54 21 contains two distinct periodic signals, the 2.16 hour ellipsoidal modulation discovered by Koen, Orosz, & Wade (1998) and an additional modulation at 7.8 hours. This 7.8 hour modulation is clearly not sinusoidal: the rise time is about 0.25 in phase, whereas the decay time is 0.75 in phase. Its amplitude is roughly half of the amplitude of the ellipsoidal modulation. Second, after the 7.8 hour modulation is removed, the light curve folded on the orbital period clearly shows the signature of the transit of the white dwarf across the face of the sdB star and the signature of the occultation of the white dwarf by the sdB star. We used the Wilson-Devinney code to model the light curve to obtain the inclination, the mass ratio, and the Omega potentials, and a Monte Carlo code to compute confidence limits on interesting system parameters. We find component masses of M_sdB = 0.36 +/- 0.16 solar masses and M_WD = 0.47 +/- 0.16 solar masses (M_total = 0.86 +/- 0.35 solar masses, 68 per cent confidence limits). If we impose an additional constraint and require the computed mass and radius of the white dwarf to be consistent with a theoretical mass-radius relation, we find M_sdB = 0.511 +0.047 -0.050 solar masses and M_WD = 0.526 +0.033 -0.030 solar masses (68 per cent confidence limits). In this case the total mass of the system is less than 1.4 solar masses at the 99.99 per cent confidence level. We briefly discuss possible interpretations of the 7.8 hour modulation and the importance of KPD 0422+5421 as a member of a rare class of evolved binaries.
KPD 1930+2752 is a short-period pulsating subdwarf B (sdB) star. It is also an ellipsoidal variable with a known binary period just over two hours. The companion is most likely a white dwarf and the total mass of the system is close to the Chandresak har limit. In this paper we report the results of Whole Earth Telescope (WET) photometric observations during 2003 and a smaller multisite campaign from 2002. From 355 hours of WET data, we detect 68 pulsation frequencies and suggest an additional 13 frequencies within a crowded and complex temporal spectrum between 3065 and 6343 $mu$Hz (periods between 326 and 157 s). We examine pulsation properties including phase and amplitude stability in an attempt to understand the nature of the pulsation mechanism. We examine a stochastic mechanism by comparing amplitude variations with simulated stochastic data. We also use the binary nature of KPD 1930+2752 for identifying pulsation modes via multiplet structure and a tidally-induced pulsation geometry. Our results indicate a complicated pulsation structure that includes short-period ($approx 16$ h) amplitude variability, rotationally split modes, tidally-induced modes, and some pulsations which are geometrically limited on the sdB star.
The magnetic white dwarf SDSS J121209.31+013627.7 exhibits a weak, narrow Halpha emission line whose radial velocity and strength are modulated on a period of ~90 minutes. Though indicative of irradiation on a nearby companion, no cool continuum comp onent is evident in the optical spectrum, and IR photometry limits the absolute magnitude of the companion to M_J > 13.37. This is equivalent to an isolated L5 dwarf, with T_eff < 1700 K. Consideration of possible evolutionary histories suggests that, until ~0.6 Gyr ago, the brown dwarf orbited a ~1.5 M_sun main seqeunce star with P ~ 1 yr, a ~ 1 AU, thus resembling many of the gaseous superplanets being found in extrasolar planet searches. Common envelope evolution when the massive star left the main sequence reduced the period to only a few hours, and ensuing angular momentum loss has further degraded the orbit. The binary is ripe for additional observations aimed at better studying brown dwarfs and the effects of irradiation on their structure.
142 - S.-B. Qian , L. Liu , L.-Y. Zhu 2012
By using six new determined mid-eclipse times together with those collected from the literature, we found that the Observed-Calculated (O-C) curve of RR Cae shows a cyclic change with a period of 11.9 years and an amplitude of 14.3s, while it undergo es an upward parabolic variation (revealing a long-term period increase at a rate of dP/dt =+4.18(+-0.20)x10^(-12). The cyclic change was analyzed for the light-travel time effect that arises from the gravitational influence of a third companion. The mass of the third body was determined to be M_3*sin i = 4.2(+-0.4) M_{Jup} suggesting that it is a circumbinary giant planet when its orbital inclination is larger than 17.6 degree. The orbital separation of the circumbinary planet from the central eclipsing binary is about 5.3(+-0.6)AU. The period increase is opposite to the changes caused by angular momentum loss via magnetic braking or/and gravitational radiation, nor can it be explained by the mass transfer between both components because of its detached configuration. These indicate that the observed upward parabolic change is only a part of a long-period (longer than 26.3 years) cyclic variation, which may reveal the presence of another giant circumbinary planet in a wide orbit.
We report the discovery of an extremely close, eclipsing binary system. A white dwarf is orbited by a core He-burning compact hot subdwarf star with a period as short as $simeq0.04987 {rm d}$ making this system the most compact hot subdwarf binary di scovered so far. The subdwarf will start to transfer helium-rich material on short timescales of less than $50 {rm Myr}$. The ignition of He-burning at the surface may trigger carbon-burning in the core although the WD is less massive than the Chandrasekhar limit ($>0.74,M_{rm odot}$) making this binary a possible progenitor candidate for a supernova type Ia event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا