ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-infrared Imaging of a Circumstellar Disk Around HR 4796: Mapping the Debris of Planetary Formation

159   0   0.0 ( 0 )
 نشر من قبل David W. Koerner
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a circumstellar disk around the young A0 star, HR 4796, in thermal infrared imaging carried out at the W.M. Keck Observatory. By fitting a model of the emission from a flat dusty disk to an image at lambda=20.8 microns, we derive a disk inclination, i = 72 +6/-9 deg from face on, with the long axis of emission at PA 28 +/-6 deg. The intensity of emission does not decrease with radius as expected for circumstellar disks but increases outward from the star, peaking near both ends of the elongated structure. We simulate this appearance by varying the inner radius in our model and find an inner hole in the disk with radius R_in = 55+/-15 AU. This value corresponds to the radial distance of our own Kuiper belt and may suggest a source of dust in the collision of cometesimals. By contrast with the appearance at 20.8 microns, excess emission at lambda = 12.5 microns is faint and concentrated at the stellar position. Similar emission is also detected at 20.8 microns in residual subtraction of the best-fit model from the image. The intensity and ratio of flux densities at the two wavelengths could be accounted for by a tenuous dust component that is confined within a few AU of the star with mean temperature of a few hundred degrees K, similar to that of zodiacal dust in our own solar system. The morphology of dust emission from HR 4796 (age 10 Myr) suggests that its disk is in a transitional planet-forming stage, between that of massive gaseous proto-stellar disks and more tenuous debris disks such as the one detected around Vega.

قيم البحث

اقرأ أيضاً

Debris disks are the natural by-products of the planet formation process. Scattered or polarized light observations are mostly sensitive to small dust grains that are released from the grinding down of bigger planetesimals. High angular resolution ob servations at optical wavelengths can provide key constraints on the radial and azimuthal distribution of the small dust grains. These constraints can help us better understand where most of the dust grains are released upon collisions. We present SPHERE/ZIMPOL observations of the debris disk around HR 4796 A, and model the radial profiles along several azimuthal angles of the disk with a code that accounts for the effect of stellar radiation pressure. This enables us to derive an appropriate description for the radial and azimuthal distribution of the small dust grains. Even though we only model the radial profiles along (or close to) the semi-major axis of the disk, our best-fit model is not only in good agreement with our observations but also with previously published datasets (from near-IR to sub-mm wavelengths). We find that the reference radius is located at $76.4pm0.4$ au, and the disk has an eccentricity of $0.076_{-0.010}^{+0.016}$, with the pericenter located on the front side of the disk (north of the star). We find that small dust grains must be preferentially released near the pericenter to explain the observed brightness asymmetry. Even though parent bodies spend more time near the apocenter, the brightness asymmetry implies that collisions happen more frequently near the pericenter of the disk. Our model can successfully reproduce the shape of the outer edge of the disk, without having to invoke an outer planet shepherding the debris disk. With a simple treatment of the effect of the radiation pressure, we conclude that the parent planetesimals are located in a narrow ring of about $3.6$ au in width.
234 - C. Thalmann 2011
We present high-contrast images of HR 4796 A taken with Subaru/HiCIAO in H-band, resolving the debris disk in scattered light. The application of specialized angular differential imaging methods (ADI) allows us to trace the inner edge of the disk wit h high precision, and reveals a pair of streamers extending radially outwards from the ansae. Using a simple disk model with a power-law surface brightness profile, we demonstrate that the observed streamers can be understood as part of the smoothly tapered outer boundary of the debris disk, which is most visible at the ansae. Our observations are consistent with the expected result of a narrow planetesimal ring being ground up in a collisional cascade, yielding dust with a wide range of grain sizes. Radiation forces leave large grains in the ring and push smaller grains onto elliptical, or even hyperbolic trajectories. We measure and characterize the disks surface brightness profile, and confirm the previously suspected offset of the disks center from the stars position along the rings major axis. Furthermore, we present first evidence for an offset along the minor axis. Such offsets are commonly viewed as signposts for the presence of unseen planets within a disks cavity. Our images also offer new constraints on the presence of companions down to the planetary mass regime (~9 Jupiter masses at 0.5, ~3 Jupiter masses at 1).
We have obtained a full suite of Spitzer observations to characterize the debris disk around HR 8799 and to explore how its properties are related to the recently discovered set of three massive planets orbiting the star. We distinguish three compone nts to the debris system: (1) warm dust (T ~150 K) orbiting within the innermost planet; (2) a broad zone of cold dust (T ~45 K) with a sharp inner edge, orbiting just outside the outermost planet and presumably sculpted by it; and (3) a dramatic halo of small grains originating in the cold dust component. The high level of dynamical activity implied by this halo may arise due to enhanced gravitational stirring by the massive planets. The relatively young age of HR 8799 places it in an important early stage of development and may provide some help in understanding the interaction of planets and planetary debris, an important process in the evolution of our own solar system.
We have obtained high spatial resolution imaging observations of the HR 4796A circumstellar debris dust ring using the broad optical response of the Hubble Space Telescope Imaging Spectrograph in coronagraphic mode. We use our visual wavelength obser vations to improve upon the earlier measured geometrical parameters of the ring-like disk. Two significant flux density asymmetries are noted: (1) preferential forward scattering by the disk grains and (2) an azimuthal surface brightness anisotropy about the morphological minor axis of the disk with corresponding differential ansal brightness. We find the debris ring offset from the location of the star by ~1.4 AU, a shift insufficient to explain the differing brightnesses of the NE and SW ansae simply by the 1/$r^2$ dimmunition of starlight. The STIS data also better quantify the radial confinement of the starlight-scattering circumstellar debris, to a characteristic region <14 AU in photometric half-width, with a significantly steeper inner truncation than outward falloff in radial surface brightness. The inferred spatial distribution of the disk grains is consistent with the possibility of one or more unseen co-orbital planetary-mass perturbers, and the colors of the disk grains are consistent with a collisionally evolved population of debris, possibly including ices reddened by radiation exposure to the central star.
We have obtained Gemini Planet Imager (GPI) J-, H-, K1-, and K2-Spec observations of the iconic debris ring around the young, main-sequence star HR 4796A. We applied several point-spread function (PSF) subtraction techniques to the observations (Mask -and-Interpolate, RDI-NMF, RDI-KLIP, and ADI-KLIP) to measure the geometric parameters and the scattering phase function for the disk. To understand the systematic errors associated with PSF subtraction, we also forward-modeled the observations using a Markov Chain Monte Carlo framework and a simple model for the disk. We found that measurements of the disk geometric parameters were robust, with all of our analyses yielding consistent results; however, measurements of the scattering phase function were challenging to reconstruct from PSF-subtracted images, despite extensive testing. As a result, we estimated the scattering phase function using disk modeling. We searched for a dependence of the scattering phase function with respect to the GPI filters but found none. We compared the H-band scattering phase function with that measured by Hubble Space Telescope STIS at visual wavelengths and discovered a blue color at small scattering angles and a red color at large scattering angles, consistent with predictions and laboratory measurements of large grains. Finally, we successfully modeled the SPHERE H2 HR 4796A scattered phase function using a distribution of hollow spheres composed of silicates, carbon, and metallic iron.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا