ﻻ يوجد ملخص باللغة العربية
We investigate the possibility to detect neutralino dark matter in a scenario in which the galactic dark halo is clumpy. We find that under customary assumptions on various astrophysical parameters, the antiproton and continuum gamma-ray signals from neutralino annihilation in the halo put the strongest limits on the clumpiness of a neutralino halo. We argue that indirect detection through neutrinos from the Earth and the Sun should not be much affected by clumpiness. We identify situations in parameter space where the gamma-ray line, positron and diffuse neutrino signals from annihilations in the halo may provide interesting signals in upcoming detectors.
We investigate if the gamma ray halo, for which recent evidence has been found in EGRET data, can be explained by neutralino annihilations in a clumpy halo. We find that the measured excess gamma ray flux can be explained through a moderate amount of
In the supersymmetric (SUSY) standard model, the lightest neutralino may be the lightest SUSY particle (LSP), and it is is a candidate of the dark matter in the universe. The LSP dark matter might be produced by the non-thermal process such as heavy
We investigate the current status of the light neutralino dark matter scenario within the minimal supersymmetric standard model (MSSM) taking into account latest results from the LHC. A discussion of the relevant constraints, in particular from the d
In spite of rapid experimental progress, windows for light superparticles remain. One possibility is a ~100 GeV tau slepton whose t-channel exchange can give the correct thermal relic abundance for a relatively light neutralino. We pedagogically revi
It is widely believed that dark matter exists within galaxies and clusters of galaxies. Under the assumption that this dark matter is composed of the lightest, stable supersymmetric particle, assumed to be the neutralino, the feasibility of its indir