ترغب بنشر مسار تعليمي؟ اضغط هنا

The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background: III. Separation of Galactic Emission from the Infrared Sky Brightness

212   0   0.0 ( 0 )
 نشر من قبل Richard G. Arendt
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cosmic Infrared Background (CIB) is hidden behind veils of foreground emission from our own solar system and Galaxy. This paper describes procedures for removing the Galactic IR emission from the 1.25 - 240 micron COBE DIRBE maps as steps toward the ultimate goal of detecting the CIB. The Galactic emission models are carefully chosen and constructed so that the isotropic CIB is completely retained in the residual sky maps. We start with DIRBE data from which the scattered light and thermal emission of the interplanetary dust (IPD) cloud have already been removed. Locations affected by the emission from bright compact and stellar sources are excluded from the analysis. The unresolved emission of faint stars at near- and mid-IR wavelengths is represented by a model based on Galactic source counts. The 100 micron DIRBE observations are used as the spatial template for the interstellar medium (ISM) emission at high latitudes. Correlation of the 100 micron data with H I column density allows us to isolate the component of the observed emission that is associated with the ISM. Limits are established on the far-IR emissivity of the diffuse ionized medium, which indicate a lower emissivity per H nucleus than in the neutral medium. At 240 micron, we find that adding a second spatial template to the ISM model can greatly improve the accuracy of the model at low latitudes. The crucial product of this analysis is a set of all-sky IR maps from which the Galactic (and IPD) emission has been removed. We discuss systematic uncertainties and potential errors in the foreground subtraction process that may have an impact on studies seeking to detect the CIB in the residual maps.

قيم البحث

اقرأ أيضاً

In this paper we examine the cosmological constraints of the recent DIRBE and FIRAS detection of the extragalactic background light between 125-5000 microns on the metal and star formation histories of the universe.
The DIRBE on the COBE spacecraft was designed primarily to conduct systematic search for an isotropic CIB in ten photometric bands from 1.25 to 240 microns. The results of that search are presented here. Conservative limits on the CIB are obtained fr om the minimum observed brightness in all-sky maps at each wavelength, with the faintest limits in the DIRBE spectral range being at 3.5 microns ( u I_ u < 64 nW/m^2/sr, 95% CL) and at 240 microns ( u I_ u < 28 nW/m^2/sr, 95% CL). The bright foregrounds from interplanetary dust scattering and emission, stars, and interstellar dust emission are the principal impediments to the DIRBE measurements of the CIB. These foregrounds have been modeled and removed from the sky maps. Assessment of the random and systematic uncertainties in the residuals and tests for isotropy show that only the 140 and 240 microns data provide candidate detections of the CIB. The residuals and their uncertainties provide CIB upper limits more restrictive than the dark sky limits at wavelengths from 1.25 to 100 microns. No plausible solar system or Galactic source of the observed 140 and 240 microns residuals can be identified, leading to the conclusion that the CIB has been detected at levels of u I_ u = 25+-7 and 14+-3 nW/m^2/sr at 140 and 240 microns respectively. The integrated energy from 140 to 240 microns, 10.3 nW/m^2/sr, is about twice the integrated optical light from the galaxies in the Hubble Deep Field, suggesting that star formation might have been heavily enshrouded by dust at high redshift. The detections and upper limits reported here provide new constraints on models of the history of energy-releasing processes and dust production since the decoupling of the cosmic microwave background from matter.
The COBE Diffuse Infrared Background Experiment (DIRBE) was designed to search for the cosmic infrared background (CIB) radiation. Scattered light and thermal emission from the interplanetary dust (IPD) are major contributors to the diffuse sky brigh tness at most infrared wavelengths. Accurate removal of this zodiacal light foreground is a necessary step toward a direct measurement of the CIB. The zodiacal light foreground contribution in each of the 10 DIRBE wavelength bands ranging from 1.25 to 240 microns is distinguished by its apparent seasonal variation over the whole sky. This contribution has been extracted by fitting the brightness calculated from a parameterized physical model to the time variation of the all-sky DIRBE measurements over 10 months of observations. The model brightness is evaluated as the integral along the line of sight of the product of a source function and a three-dimensional dust density distribution function. The dust density distribution is composed of multiple components: a smooth cloud, three asteroidal dust bands, and a circumsolar ring near 1 A.U. By using a directly measurable quantity which relates only to the IPD cloud, we exclude other contributors to the sky brightness from the IPD model. Using the IPD model described here, high-quality maps of the infrared sky with the zodiacal foreground removed have been generated. Imperfections in the model reveal themselves as low-level systematic artifacts in the residual maps which correlate with components of the IPD. The most evident of these artifacts are located near the ecliptic plane in the mid-infrared, and are less than 2% of the zodiacal foreground brightness. Uncertainties associated with the model are discussed, including implications for the CIB search.
76 - James Bock 2005
We are developing a rocket-borne instrument (the Cosmic Infrared Background ExpeRiment, or CIBER) to search for signatures of primordial galaxy formation in the cosmic near-infrared extra-galactic background. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The cameras will search for spatial fluctuations in the background on angular scales from 7 arcseconds to 2 degrees over a range of angular scales poorly covered by previous experiments. CIBER will determine if the fluctuations reported by the IRTS arise from first-light galaxies or have a local origin. In a short rocket flight CIBER has sensitivity to probe fluctuations 100 times fainter than IRTS/DIRBE. By jointly observing regions of the sky studied by Spitzer and ASTRO-F, CIBER will build a multi-color view of the near-infrared background, accurately assessing the contribution of local (z = 1-3) galaxies to the observed background fluctuations, allowing a deep and comprehensive survey for first-light galaxy background fluctuations. The low-resolution spectrometer will search for a redshifted Lyman cutoff feature between 0.8 - 2.0 microns. The high-resolution spectrometer will trace zodiacal light using the intensity of scattered Fraunhofer lines, providing an independent measurement of the zodiacal emission and a new check of DIRBE zodiacal dust models. The combination will systematically search for the infrared excess background light reported in near-infrared DIRBE/IRTS data, compared with the small excess reported at optical wavelengths.
New determinations are presented of the cosmic infrared background monopole brightness in the Planck HFI bands from 100 GHz to 857 GHz. Planck was not designed to measure the monopole component of sky brightness, so cross-correlation of the 2015 HFI maps with COBE/FIRAS data is used to recalibrate the zero level of the HFI maps. For the HFI 545 and 857 GHz maps, the brightness scale is also recalibrated. Correlation of the recalibrated HFI maps with a linear combination of Galactic H I and H alpha data is used to separate the Galactic foreground emission and determine the cosmic infrared background brightness in each of the HFI bands. We obtain CIB values of 0.007 +- 0.014, 0.010 +- 0.019, 0.060 +- 0.023, 0.149 +- 0.017, 0.371 +- 0.018, and 0.576 +- 0.034 MJy/sr at 100, 143, 217, 353, 545, and 857 GHz, respectively. The estimated uncertainties for the 353 to 857 GHz bands are about 3 to 6 times smaller than those of previous direct CIB determinations at these frequencies. Our results are compared with integrated source brightness results from selected recent submillimeter and millimeter wavelength imaging surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا