ترغب بنشر مسار تعليمي؟ اضغط هنا

Occultation Mapping of the Central Engine in the Active Galaxy MCG -6-30-15

77   0   0.0 ( 0 )
 نشر من قبل Tahir Yaqoob
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The colossal power output of active galactic nuclei (AGN) is believed to be fueled by the accretion of matter onto a supermassive black hole. This central accreting region of AGN has hitherto been spatially unresolved and its structure therefore unknown. Here we propose that a previously reported `deep minimum in the X-ray intensity of the AGN MCG-6-30-15, was due to a unique X-ray occultation event and that it probes structure of the central engine on scales < 1e14 cm, or 1.4e-7 arcseconds. The data are consistent with a bright central source surrounded by a less intense ring, which we identify with the inner edge of an accretion disk. These may be the first direct measurements of the spatial structure and geometry of the accreting black-hole system in an active galaxy.If the ring of X-ray emission is identified with the inner edge of an accretion disk, upper limits on the BH mass can be derived. Our occultation interpretation is controversial in the sense that X-ray variability in AGNs is normally attributed to intrinsic physical changes in the X-ray emission region, such as disk or coronal instabilities.


قيم البحث

اقرأ أيضاً

58 - C. Otani , T. Kii , C.S. Reynolds 1995
We present the results of a 4 day ASCA observation of the Seyfert galaxy MCG-6-30-15, focussing on the nature of the X-ray absorption by the warm absorber, characterizd by the K-edges of the intermediately ionized oxygen, OVII and OVIII. We confirm t hat the column density of OVIII changes on a timescale of $sim 10^4$~s when the X-ray continuum flux decreases. The significant anti-correlation of column density with continuum flux gives direct evidence that the warm absorber is photoionized by the X-ray continuum. From the timescale of the variation of the OVIII column density, we estimate that it originates from gas within a radius of about $10^{17}cm$ of the central engine. In contrast, the depth of the OVII edge shows no response to the continuum flux, which indicates that it originates in gas at larger radii. Our results strongly suggest that there are two warm absorbing regions; one located near or within the Broad Line Region, the other associated with the outer molecular torus, scattering medium or Narrow Line Region.
74 - C.S.Reynolds 1997
We present a multiwaveband spectroscopic study of the nearby Seyfert 1 galaxy MCG-6-30-15. New optical spectra from the Anglo-Australian Telescope are presented which clearly show the effects of dust extinction/reddening on both the emission line spe ctrum and the non-stellar AGN continuum. The reddening is constrained to be in the range E(B-V)=0.61-1.09. Spectroscopy in the X-ray band, with both ROSAT and ASCA, reveal absorption by the warm absorber but little or no neutral absorption expected to accompany the dust responsible for the optical reddening. The dusty warm absorber solution to this discrepancy is discussed and photoionization models of such warm absorbers are constructed. The optical spectrum also displays the relatively strong `coronal lines of [FeX]6375, [FeXI]7892 and [FeXIV]5303. We show that these lines may plausibly originate from the outer regions of the warm absorber, although better calculations of the collision strengths for these transitions are required in order to conclusively address this issue. We also present new ultraviolet data from the International Ultraviolet Explorer and suggest that much of the observed UV flux is scattered into our line of sight (with a scattering fraction of 1-5 per cent). We conclude with a discussion of the global energetics of this system.
85 - Chen Hu 2016
We propose a method for the flux calibration of reverberation mapping spectra based on accurate measurement of [O III] $lambda 5007$ emission by spectral fitting. The method can achieve better accuracy than the traditional method of van Groningen & W anders (1992), allowing reverberation mapping measurements for object with variability amplitudes as low as $sim$ 5%. As a demonstration, we reanalyze the data of the Seyfert 1 galaxy MCG--6-30-15 taken from the 2008 campaign of the Lick AGN Monitoring Project, which previously failed to obtain a time lag for this weakly variable object owing to a relatively large flux calibration uncertainty. We detect a statistically significant rest-frame time lag of $6.38_{-2.69}^{+3.07}$ days between the H$beta$ and $V$-band light curves. Combining this lag with FWHM(H$beta$) = $1933pm81$ $rm km~s^{-1}$ and a virial coefficient of $f$ = 0.7, we derive a virial black hole mass of $3.26_{-1.40}^{+1.59}times10^6$ $M_{odot}$, which agrees well with previous estimates by other methods.
440 - K.Iwasawa 1996
We report on the variability of the iron K emission line in the Seyfert 1 galaxy MCG--6-30-15 during a four-day ASCA observation. The line consists of a narrow core at an energy of about 6.4 keV, and a broad red wing extending to below 5 keV, which a re interpreted as line emission arising from the inner parts of an accretion disk. The narrow core correlates well with the continuum flux whereas the broad wing weakly anti-correlates. When the source is brightest, the line is dominated by the narrow core, whilst during a deep minimum, the narrow core is very weak and a huge red tail appears. However, at other times when the continuum shows rather rapid changes, the broad wing is more variable than the narrow core, and shows evidence for correlated changes contrary to its long time scale behaviour. The peculiar line profile during the deep minimum spectrum suggests that the line emitting region is very close to a central spinning (Kerr) black hole where enormous gravitational effects operate.
68 - R. W. Goosmann 2007
We propose a reflection model of the time delays detected during an exceptionally bright, single flare in MCG-6-30-15. We consider a scenario in which the delays of the hard X-rays with respect to the soft X-rays are caused by the presence of the del ayed reflection component. We employ a model of the flare, which is accompanied by reprocessed emission. We consider two geometries/thermal states of the reprocessing medium: a partially ionized accretion disk surface and a distribution of magnetically confined, cold blobs. The reprocessing by cold blobs predicts positive time delays and a saturation in the time delay -- energy relation, which is likely present in the data. The model requires a strong reflection component and relies on the apparent pivoting of the combined primary and reflected spectrum. The reflection by the ionized disk surface does not reproduce the observed delays. We discuss the relation between the two reflection scenarios and argue that they are both present in MCG-6-30-15.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا