ترغب بنشر مسار تعليمي؟ اضغط هنا

The 1.4 GHz light curve of GRB 970508

79   0   0.0 ( 0 )
 نشر من قبل Titus Galama
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T.J. Galama




اسأل ChatGPT حول البحث

We report on Westerbork 1.4 GHz radio observations of the radio counterpart to $gamma$-ray burst GRB~970508, between 0.80 and 138 days after this event. The 1.4 GHz light curve shows a transition from optically thick to thin emission between 39 and 54 days after the event. We derive the slope $p$ of the spectrum of injected electrons ($dN/dgamma_{e}proptogamma_{e}^{-p}$) in two independent ways which yield values very close to $p=2.2$. This is in agreement with a relativistic dynamically near-adiabatic blast wave model whose emission is dominated by synchrotron radiation and in which a significant fraction of the electrons cool fast.

قيم البحث

اقرأ أيضاً

We report on the results of optical follow-up observations of the counterpart of GRB 970508, starting 7 hours after the event. Multi-color U, B, V, R$_{c}$ and I$_{c}$ band observations were obtained during the first three consecutive nights. The cou nterpart was monitored regularly in R$_{c}$ until $sim$ 4 months after the burst. The light curve after the maximum follows a decline that can be fitted with a power law with exponent $alpha$ = --1.141 $pm$ 0.014. Deviations from a smooth power law decay are moderate (r.m.s. = 0.15 magnitude). We find no flattening of the light curve at late times. The optical afterglow fluence is a significant fraction, $sim$ 5%, of the GRB fluence. The optical energy distribution can be well represented by a power law, the slope of which changed at the time of the maximum (the spectrum became redder).
(Abridged) We present densely sampled BVRI light curves of the optical transient associated with the gamma-ray burst GRB 030329, the result of a coordinated observing campaign conducted at five observatories. Augmented with published observations of this GRB, the compiled optical dataset contains 2687 photometric measurements, obtained between 78 minutes and 79 days after the burst. We show that the underlying supernova 2003dh evolved faster than, and was probably somewhat fainter than the type Ic SN 1998bw, associated with GRB 980425. We find that our data can be described by a broken power-law decay perturbed by a complex variable component. The early- and late-time decay slopes are determined to be ~1.1 and ~2, respectively. Assuming this single power-law model, we constrain the break to lie between ~3 and ~8 days after the burst. This simple, singly-broken power-law model, derived only from the analysis of our optical observations, may also account for available multi-band data, provided that the break happened ~8 days after the burst. The more complex double-jet model of Berger et al. provides a comparable fit to the optical, X-ray, mm and radio observations of this event. We detect a significant change in optical colors during the first day. Our color analysis is consistent with a cooling break frequency sweeping through the optical band during the first day. The light curves of GRB 030329 reveal a rich array of variations, superposed over the mean power-law decay. We find that the early variations are asymmetric, with a steep rise followed by a relatively slower (by a factor of about two) decline. The variations maintain a similar time scale during the first four days, and then get significantly longer.
194 - R.A.M.J. Wijers 1998
We have calculated synchrotron spectra of relativistic blast waves, and find predicted characteristic frequencies that are more than an order of magnitude different from previous calculations. For the case of an adiabatically expanding blast wave, wh ich is applicable to observed gamma-ray burst (GRB) afterglows at late times, we give expressions to infer the physical properties of the afterglow from the measured spectral features. We show that enough data exist for GRB970508 to compute unambiguously the ambient density, n=0.03/cm**3, and the blast wave energy per unit solid angle, E=3E52 erg/4pi sr. We also compute the energy density in electrons and magnetic field. We find that they are 12% and 9%, respectively, of the nucleon energy density and thus confirm for the first time that both are close to but below equipartition. For GRB971214, we discuss the break found in its spectrum by Ramaprakash et al. (1998). It can be interpreted either as the peak frequency or as the cooling frequency; both interpretations have some problems, but on balance the break is more likely to be the cooling frequency. Even when we assume this, our ignorance of the self-absorption frequency and presence or absence of beaming make it impossible to constrain the physical parameters of GRB971214 very well.
We present results from simulations of the extragalactic polarized sky at 1.4 GHz. As the basis for our polarization models, we use a semi-empirical simulation of the extragalactic total intensity (Stokes I) continuum sky developed at the University of Oxford (http://scubed.physics.ox.ac.uk) under the European SKA Design Study (SKADS) initiative, and polarization distributions derived from analysis of polarization observations. By considering a luminosity dependence for the polarization of AGN, we are able to fit the 1.4 GHz polarized source counts derived from the NVSS and the DRAO ELAIS N1 deep field survey down to approximately 1 mJy. This trend is confirmed by analysis of the polarization of a complete sample of bright AGN. We are unable to fit the additional flattening of the polarized source counts from the deepest observations of the ELAIS N1 survey, which go down to ~0.5 mJy. Below 1 mJy in Stokes I at 1.4 GHz, starforming galaxies become an increasingly important fraction of all radio sources. We use a spiral galaxy integrated polarization model to make realistic predictions of the number of polarized sources at microJy levels in polarized flux density and hence, realistic predictions of what the next generation radio telescopes such as ASKAP, other SKA pathfinders and the SKA itself will see.
288 - K.L. Page 2009
Swift-detected GRB 080307 showed an unusual smooth rise in its X-ray light-curve around 100 seconds after the burst, at the start of which the emission briefly softened. This `hump has a longer duration than is normal for a flare at early times and d oes not demonstrate a typical flare profile. Using a two component power-law-to-exponential model, the rising emission can be modelled as the onset of the afterglow, something which is very rarely seen in Swift-X-ray light-curves. We cannot, however, rule out that the hump is a particularly slow early-time flare, or that it is caused by upscattered reverse shock electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا