ترغب بنشر مسار تعليمي؟ اضغط هنا

Prototype Tests for the CELESTE Solar Array Gamma--Ray Telescope

105   0   0.0 ( 0 )
 نشر من قبل Berrie Giebels
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The CELESTE experiment will be an Atmospheric Cherenkov detector designed to bridge the gap in energy sensitivity between current satellite and ground-based gamma-ray telescopes, 20 to 300 GeV. We present test results made at the former solar power plant, Themis, in the French Pyrenees. The tests confirm the viability of using a central tower heliostat array for Cherenkov wavefront sampling.



قيم البحث

اقرأ أيضاً

The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine teles copes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $gtrsim 8^circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.
We will report the observations of TeV gamma ray flares from Markarian 501 using Telescope Array Prototype. The observation were carried out continuously from the end of March to the end of July in 1997. The energy spectrum, and the time variation of the gamma ray intensities are shown. The intensity has been changed by the order of magnitude in this period and the possible quasi periodic oscillation of 12.7days were discovered.
Pointing calibration is an offline correction applied in order to obtain the true pointing direction of a telescope. The Cherenkov Telescope Array (CTA) aims to have the precision to determine the position of point-like as well as slightly extended s ources, with the goal of systematic errors less than 7 arc seconds in space angle. This poster describes the pointing calibration concept being developed for the CTA Medium Size Telescope (MST) prototype at Berlin-Adlershof, showing test results and preliminary measurements. The MST pointing calibration method uses two CCD cameras, mounted on the telescope dish, to determine the true pointing of the telescope. The Lid CCD is aligned to the optical axis of the telescope, calibrated with LEDs on the dummy gamma-camera lid; the Sky CCD is pre-aligned to the Lid CCD and the transformation between the Sky and Lid CCD camera fields of view is precisely modelled with images from special pointing runs which are also used to determine the pointing model. During source tracking, the CCD cameras record images which are analysed offline using software tools including Astrometry.net to determine the true pointing coordinates.
254 - S.Aiso , M.Chikawa , Y.Hayashi 1997
The Telescope Array prototype detectors were installed at Akeno Observatory and at the Utah Flys Eye site. Using these detectors, we have observed the Crab Nebula and AGNs since the end of 1995. The successful detections of TeV gamma rays from Crab Nebula and Mkn501 are reported.
A single-mirror small-size (SST-1M) Davies-Cotton telescope with a dish diameter of 4 m has been built by a consortium of Polish and Swiss institutions as a prototype for one of the proposed small-size telescopes for the southern observatory of the C herenkov Telescope Array (CTA). The design represents a very simple, reliable, and cheap solution. The mechanical structure prototype with its drive system is now being tested at the Institute of Nuclear Physics PAS in Krakow. Here we present the design of the prototype and results of the performance tests of the structure and the drive and control system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا