ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic dust polarized emission at high latitudes and CMB polarization

56   0   0.0 ( 0 )
 نشر من قبل Shiv Kumar Sethi
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We estimate the dust polarized emission in our galaxy at high galactic latitudes, which is the dominant foreground for measuring CMB polarization using the high frequency instrument (HFI) aboard Planck surveyor. We compare it with the level of CMB polarization and conclude that, for angular scales $le 1^{circ}$, the scalar-induced CMB polarization and temperature-polarization cross-correlation are much larger than the foreground level at $ u simeq 100 GHz$. The tensor-induced signals seem to be at best comparable to the foreground level.}



قيم البحث

اقرأ أيضاً

The polarized thermal emission from Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100GHz. We exploit the Planck HFI polarization data from 100 to 353GHz to measure the dust angular power spectra $C_ell^{EE,BB}$ over the range $40<ell<600$ well away from the Galactic plane. These will bring new insights into interstellar dust physics and a precise determination of the level of contamination for CMB polarization experiments. We show that statistical properties of the emission can be characterized over large fractions of the sky using $C_ell$. For the dust, they are well described by power laws in $ell$ with exponents $alpha^{EE,BB}=-2.42pm0.02$. The amplitudes of the polarization $C_ell$ vary with the average brightness in a way similar to the intensity ones. The dust polarization frequency dependence is consistent with modified blackbody emission with $beta_d=1.59$ and $T_d=19.6$K. We find a systematic ratio between the amplitudes of the Galactic $B$- and $E$-modes of 0.5. We show that even in the faintest dust-emitting regions there are no clean windows where primordial CMB $B$-mode polarization could be measured without subtraction of dust emission. Finally, we investigate the level of dust polarization in the BICEP2 experiment field. Extrapolation of the Planck 353GHz data to 150GHz gives a dust power $ell(ell+1)C_ell^{BB}/(2pi)$ of $1.32times10^{-2}mu$K$_{CMB}^2$ over the $40<ell<120$ range; the statistical uncertainty is $pm0.29$ and there is an additional uncertainty (+0.28,-0.24) from the extrapolation, both in the same units. This is the same magnitude as reported by BICEP2 over this $ell$ range, which highlights the need for assessment of the polarized dust signal even in the cleanest windows of the sky.
Science opportunities and recommendations concerning optical/infrared polarimetry for the upcoming decade in the field of cosmology. Community-based White Paper to Astro2010 in response to the call for such papers.
129 - E. Carretti 2010
The CMB polarization promises to unveil the dawn of time measuring the gravitational wave background emitted by the Inflation. The CMB signal is faint, however, and easily contaminated by the Galactic foreground emission, accurate measurements of whi ch are thus crucial to make CMB observations successful. We review the CMB polarization properties and the current knowledge on the Galactic synchrotron emission, which dominates the foregrounds budget at low frequency. We then focus on the S-Band Polarization All Sky Survey (S-PASS), a recently completed survey of the entire southern sky designed to investigate the Galactic CMB foreground.
CH stars form a distinct class of objects with characteristic properties like iron deficiency, enrichment of carbon and overabundance in heavy elements. These properties can provide strong observational constraints for theoretical computation of nucl eosynthesis at low-metallicity. An important question is the relative surface density of CH stars which can provide valuable inputs to our understanding on the role of low to intermediate-mass stars in the early Galactic chemical evolution. Spectroscopic characterization provides an effective way of identifying CH stars. The present analysis is aimed at a quantitative assessment of the fraction of CH stars in a sample of stars using a set of spectral classification criteria. The sample consists of 92 objects selected from a collection of candidate Faint High Latitude Carbon stars from the Hamburg/ESO survey. Medium resolution (R ~ 1300) spectra for these objects were obtained using OMR at VBO, Kavalur and HFOSC at HCT, IAO, Hanle, during 2007 - 2009 spanning a wavelength range 3800 - 6800 A. Spectral analysis shows 36 of the 92 objects to be potential CH stars; combined with our earlier studies (Goswami 2005, Goswami et al. 2007) this implies ~ 37% (of 243) objects as the CH fraction. We present spectral descriptions of the newly identified CH star candidates. Estimated effective temperatures, 12C/13C isotopic ratios and their locations on the two colour J-H vs H-K plot are used to support their identification.
We have studied the implications of high sensitivity polarization measurements of objects from the WMAP point source catalogue made using the VLA at 8.4, 22 and 43 GHz. The fractional polarization of sources is almost independent of frequency with a median of ~2 per cent and an average, for detected sources, of ~3.5 per cent. These values are also independent of the total intensity over the narrow range of intensity we sample. Using a contemporaneous sample of 105 sources detected at all 3 VLA frequencies, we have investigated the spectral behaviour as a function of frequency by means of a 2-colour diagram. Most sources have power-law spectra in total intensity, as expected. On the other hand they appear to be almost randomly distributed in the polarized intensity 2-colour diagram. This is compatible with the polarized spectra being much less smooth than those in intensity and we speculate on the physical origins of this. We have performed an analysis of the correlations between the fractional polarization and spectral indices including computation of the principal components. We find that there is little correlation between the fractional polarization and the intensity spectral indices. This is also the case when we include polarization measurements at 1.4 GHz from the NVSS. In addition we compute 45 rotation measures from polarization position angles which are compatible with a lambda^2 law. We use our results to predict the level of point source confusion noise that contaminates CMB polarization measurements aimed at detecting primordial gravitational waves from inflation. We conclude that some level of source subtraction will be necessary to detect r~0.1 below 100 GHz and at all frequencies to detect r~0.01. We present estimates of the level of contamination expected and the number of sources which need to be subtracted as a function of the imposed cut flux density and frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا