ترغب بنشر مسار تعليمي؟ اضغط هنا

A 5-GHz Southern Hemisphere VLBI Survey of Compact Radio Sources - II

405   0   0.0 ( 0 )
 نشر من قبل Zhiqiang Shen
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Z.-Q. Shen




اسأل ChatGPT حول البحث

We report the results of a 5-GHz southern-hemisphere snapshot VLBI observation of a sample of blazars. The observations were performed with the Southern Hemisphere VLBI Network plus the Shanghai station in 1993 May. Twenty-three flat-spectrum, radio-loud sources were imaged. These are the first VLBI images for 15 of the sources. Eight of the sources are EGRET (> 100 MeV) gamma-ray sources. The milliarcsecond morphology shows a core-jet structure for 12 sources, and a single compact core for the remaining 11. No compact doubles were seen. Compared with other radio images at different epochs and/or different frequencies, 3 core-jet blazars show evidence of bent jets, and there is some evidence for superluminal motion in the cases of 2 blazars. The detailed descriptions for individual blazars are given. This is the second part of a survey: the first part was reported by Shen et al. (AJ 114(1997)1999).



قيم البحث

اقرأ أيضاً

66 - Z.-Q. Shen 1997
We report the results of a 5 GHz southern hemisphere VLBI survey of compact extragalactic radio sources. These observations were undertaken with the SHEVE array plus Shanghai station in November 1992. A sample of 22 sources was observed and images of 20 of them were obtained. Of the 20 sources imaged, 15 showed core-jet structure, one had a two-sided jet and 4 had only single compact cores. Eleven of the 16 core-jet (including one two-sided jet) sources show some evidence of bent jets. No compact doubles were found. A comparison with previous images and the temporal variability of the radio flux density showed evidence for superluminal motion in 4 of the sources. Five sources were high energy (>100 MeV) gamma-ray sources. Statistical analysis showed the dominance of highly polarized quasars among the detected gamma-ray sources, which emphasizes the importance of beaming effect in the gamma-ray emission.
Global VLBI observations at 5 GHz have been performed to study the source morphology in 10 compact steep-spectrum (CSS) sources selected from the Peacock & Wall catalogue with the aim of finding asymmetric structures produced by the interaction with the ambient medium. The combination of these data and earlier 1.7-GHz observations allows the study of the spectral index distribution across the source structure and the unambiguous determination of the nature of each component. In seven sources we detected the core component with a flat or inverted spectrum. In six sources the radio emission has a two-sided morphology and comes mainly from steep-spectrum extended structures, like lobes, jets, and hotspots. Only one source, 0319+121, has a one-sided core-jet structure. In three out of the six sources with a two-sided structure the flux density arising from the lobes is asymmetric, and the brightest lobe is the one closest to the core, suggesting that the jets are expanding in an inhomogeneous ambient medium which may influence the source growth. The interaction between the jet and the environment may slow down the source expansion and enhance the luminosity due to severe radiative losses, likely producing an excess of CSS radio sources in flux density limited samples. The lobes of the other three asymmetric sources have a brighter-when-farther behaviour, in agreement with what is expected by projection and relativistic effects. Simultaneous VLA observations carried out to investigate the polarization properties of the targets detected significant polarized emission (~5.5%) only from the quasar 0319+121.
106 - J.F. Zhou 2000
Five compact radio sources, include 0420-014, 1334-127, 1504-166, 2243-123, and 2345-167, were observed at 5GHz by European VLBI (Very Long Baseline Interferometry) Network (EVN) in June, 1996. The primary purpose of this observation was to confirm t heir superluminal proper motions. Here, the results of 1334-127, 1504-166, 2243-123 and 2345-167 are presented.
(abridged) Very long baseline interferometry (VLBI) observations at 86$,$GHz (wavelength, $lambda = 3,$mm) reach a resolution of about 50 $mu$as, probing the collimation and acceleration regions of relativistic outflows in active galactic nuclei. To extend the statistical studies of compact extragalactic jets, a large global 86 GHz VLBI survey of 162 radio sources was conducted in 2010-2011 using the Global Millimeter VLBI Array. The survey data attained a typical baseline sensitivity of 0.1 Jy and a typical image sensitivity of 5 mJy/beam, providing successful detections and images for all of the survey targets. For 138 objects, the survey provides the first ever VLBI images made at 86 GHz. Gaussian model fitting of the visibility data was applied to represent the structure of the sources. The Gaussian model-fit-based estimates of brightness temperature ($T_mathrm{b}$) at the jet base (core) and in moving regions (jet components) downstream from the core were compared to the estimates of $T_mathrm{b}$ limits made directly from the visibility data, demonstrating a good agreement between the two methods. The apparent brightness temperature estimates for the jet cores in our sample range from $2.5 times 10^{9},$K to $ 1.3times 10^{12},$K. A population model with a single intrinsic value of brightness temperature, $T_mathrm{0}$, is applied to reproduce the observed $T_mathrm{b}$ distribution. It yields $T_mathrm{0} = (3.77^{+0.10}_{-0.14}) times 10^{11},$K for the jet cores, implying that the inverse Compton losses dominate the emission. In the jet components, $T_mathrm{0} =(1.42^{+0.16}_{-0.19})times 10^{11},$K is found, slightly higher than the equipartition limit of $sim5times 10^{10},$K expected for these jet regions. For objects with sufficient structural detail detected, the adiabatic energy losses dominate the observed changes of $T_mathrm{b}$ along the jet.
The first results from the Tenth Cambridge (10C) Survey of Radio Sources, carried out using the AMI Large Array (LA) at an observing frequency of 15.7 GHz, are presented. The survey fields cover an area of approximately 27 sq. degrees to a flux-densi ty completeness of 1 mJy. Results for some deeper areas, covering approximately 12 sq. degrees, wholly contained within the total areas and complete to 0.5 mJy, are also presented. The completeness for both areas is estimated to be at least 93 per cent. The source catalogue contains 1897 entries and is available at www.mrao.cam.ac.uk/surveys/10C. It has been combined with that of the 9C Survey to calculate the 15.7-GHz source counts. A broken power law is found to provide a good parameterisation of the differential count between 0.5 mJy and 1 Jy. The measured count has been compared to that predicted by de Zotti et al. (2005). The model displays good agreement with the data at the highest flux densities but under-predicts the integrated count between 0.5 mJy and 1 Jy by about 30 per cent. Entries from the source catalogue have been matched to those contained in the catalogues of NVSS and FIRST (both of which have observing frequencies of 1.4 GHz). This matching provides evidence for a shift in the typical 1.4-to-15.7-GHz spectral index of the 15.7-GHz-selected source population with decreasing flux density towards sub-mJy levels - the spectra tend to become less steep. Automated methods for detecting extended sources have been applied to the data; approximately 5 per cent of the sources are found to be extended relative to the LA synthesised beam of approximately 30 arcsec. Investigations using higher-resolution data showed that most of the genuinely extended sources at 16 GHz are classical doubles, although some nearby galaxies and twin-jet sources were also identified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا