ترغب بنشر مسار تعليمي؟ اضغط هنا

A radiation-driven disk wind model for massive young stellar objects

49   0   0.0 ( 0 )
 نشر من قبل Daniel Proga
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A radiation-driven disk wind model is proposed that offers great promise of explaining the extreme mass loss signatures of massive young stellar objects (the BN-type objects and more luminous Herbig Be stars). It is argued that the dense low-velocity winds associated with young late-O/early-B stars would be the consequence of continuing optically-thick accretion onto them. The launch of outflow from a Keplerian disk allows wind speeds of about 200 km/s that are substantially less than the escape speed from the stellar surface. The star itself is not required to be a rapid rotator. Disk irradiation is taken into account in the hydrodynamical calculation presented, and identified as an important issue both observationally and from the dynamical point of view.


قيم البحث

اقرأ أيضاً

Radio continuum observations using the Australia telescope compact array at 5.5, 9.0, 17.0 and 22.8 GHz have detected free-free emission associated with 45 of 49 massive young stellar objects and HII regions. Of these, 26 sources are classified as io nized jets (12 of which are candidates), 2 as ambiguous jets or disc winds, 1 as a disc-wind, 14 as HII regions and 2 were unable to be categorised. Classification as ionized jets is based upon morphology, radio flux and spectral index, in conjunction with previous observational results at other wavelengths. Radio-luminosity and momentum are found to scale with bolometric luminosity in the same way as low-mass jets, indicating a common mechanism for jet production across all masses. In 13 of the jets, we see associated non-thermal/optically-thin lobes resulting from shocks either internal to the jet and/or at working surfaces. Ten jets display non-thermal (synchrotron emission) spectra in their lobes, with an average spectral index of -0.55 consistent with Fermi acceleration in shocks. This shows that magnetic fields are present, in agreement with models of jet formation incorporating magnetic fields. Since the production of collimated radio jets is associated with accretion processes, the results presented in this paper support the picture of disc-mediated accretion for the formation of massive stars with an upper-limit on the jet phase lasting approximately $6.5 times 10^4 yr$. Typical mass loss rates in the jet are found to be $1.4 times 10^{-5} M_odot yr^{-1}$ with associated momentum rates of the order $(1-2) times 10^{-2} M_odot km s^{-1} yr^{-1}$.
We discuss VLTI AMBER and MIDI interferometry in addition to single-dish Subaru observations of massive young stellar objects. The observations probe linear size scales between 10 to 1000 AU for the average distance of our sources.
Recent radio astronomical observations have revealed that HC$_{5}$N, the second shortest cyanopolyyne (HC$_{2n+1}$N), is abundant around some massive young stellar objects (MYSOs), which is not predicted by classical carbon-chain chemistry. For examp le, the observed HC$_{5}$N abundance toward the G28.28$-$0.36 MYSO is higher than that in L1527, which is one of the warm carbon chain chemistry (WCCC) sources, by more than one order of magnitude (Taniguchi et al., 2017). In this paper, we present chemical simulations of hot-core models with a warm-up period using the astrochemical code Nautilus. We find that the cyanopolyynes are formed initially in the gas phase and accreted onto the bulk and surface of granular ice mantles during the lukewarm phase, which occurs at $25 < T < 100$ K. In slow warm-up period models, the peak abundances occur as the cyanopolyynes desorb from dust grains after the temperature rises above 100 K. The lower limits of the abundances of HC$_{5}$N, CH$_{3}$CCH, and CH$_{3}$OH observed in the G28.28$-$0.36 MYSO can be reproduced in our hot-core models, after their desorption from dust grains. Moreover, previous observations suggested chemical diversity in envelopes around different MYSOs. We discuss possible interpretations of relationships between stages of the star-formation process and such chemical diversity, such as the different warm-up timescales. This timescale depends not only on the mass of central stars but also on the relationship between the size of warm regions and their infall velocity.
79 - Meyer D. M.-A. 2018
Episodic accretion-driven outbursts are an extreme manifestation of accretion variability. It has been proposed that the development of gravitational instabilities in the proto-circumstellar medium of massive young stellar objects (MYSOs) can lead to such luminous bursts, when clumps of fragmented accretion discs migrate onto the star. We simulate the early evolution of MYSOs formed by the gravitational collapse of rotating 100 M pre-stellar cores and analyze the characteristics of the bursts that episodically accompany their strongly time-variable protostellar lightcurve. We predict that MYSOs spend ~ 10^3 yr (~ 1.7%) of their modelled early 60 kyr experiencing eruptive phases, during which the peak luminosity exceeds the quiescent pre-burst values by factors from 2.5 to more than 40. Throughout these short time periods, they can acquire a substential fraction (up to ~ 50 %) of their zero-age-main sequence mass. Our findings show that fainter bursts are more common than brighter ones. We discuss our results in the context of the known bursting MYSOs, e.g. NGC6334I-MM1 and S255IR-NIRS3, and propose that these monitored bursts are part of a long-time ongoing series of eruptions, which might, in the future, be followed by other luminous flares.
63 - R. D. Blum 2004
High resolution (lambda / Delta-lambda = 50,000) K-band spectra of massive, embedded, young stellar objects are presented. The present sample consists of four massive young stars located in nascent clusters powering Galactic giant H II regions. Emiss ion in the 2.3 micron 2--0 vibrational--rotational bandhead of CO is observed. A range of velocity broadened profiles seen in three of the objects is consistent with the emission arising from a circumstellar disk seen at various inclination angles. Br gamma spectra of the same spectral and spatial resolution are also presented which support an accretion disk or torus model for massive stars. In the fourth object, Br emission suggesting a rotating torus is observed, but the CO profile is narrow, indicating that there may be different CO emission mechanisms in massive stars and this is consistent with earlier observations of the BN object and MWC 349. To--date, only young massive stars of late O or early B types have been identified with clear accretion disk signatures in such embedded clusters. Often such stars are found in the presence of other more massive stars which are revealed by their photospheric spectra but which exhibit no disk signatures. This suggests the timescale for dissipating their disks is much faster than the less massive OB stars or that the most massive stars do not form with accretion disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا