ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Rays: Studying the Origin

41   0   0.0 ( 0 )
 نشر من قبل Jacek Szabelski
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jacek Szabelski




اسأل ChatGPT حول البحث

Investigations of the origin of cosmic rays are presented. Different methods are discussed: studies of cosmic gamma rays of energy from 30 MeV to about 10^15 eV (since photons point to their places of origin), studies of the mass composition of cosmic rays (because it reflects source morphology), and studies of cosmic rays with energy above 10^19 eV (for these are the highest energies observed in nature).


قيم البحث

اقرأ أيضاً

101 - Pasquale Blasi 2012
The origin of the bulk of cosmic rays (CRs) observed at Earth is the topic of a century long investigation, paved with successes and failures. From the energetic point of view, supernova remnants (SNRs) remain the most plausible sources of CRs up to rigidity ? 10^6-10^7 GV. This confidence somehow resulted in the construction of a paradigm, the so-called SNR paradigm: CRs are accelerated through diffusive shock acceleration in SNRs and propagate diffusively in the Galaxy in an energy dependent way. Qualitative confirmation of the SNR acceleration scenario has recently been provided by gamma ray and X-ray observations. Diffusive propagation in the Galaxy is probed observationally through measurement of the secondary to primary nuclei flux ratios (such as B/C). There are however some weak points in the paradigm, which suggest that we are probably missing some physical ingredients in our models. The theory of diffusive shock acceleration at SNR shocks predicts spectra of accelerated particles which are systematically too hard compared with the ones inferred from gamma ray observations. Moreover, hard injection spectra indirectly imply a steep energy dependence of the diffusion coefficient in the Galaxy, which in turn leads to anisotropy larger than the observed one. Moreover recent measurements of the flux of nuclei suggest that the spectra have a break at rigidity ? 200 GV, which does not sit well with the common wisdom in acceleration and propagation. In this paper I will review these new developments and suggest some possible implications.
285 - Ya. N. Istomin 2011
It is shown that the relativistic jet, emitted from the center of the Galaxy during its activity, possessed power and energy spectrum of accelerated protons sufficient to explain the current cosmic rays distribution in the Galaxy. Proton acceleration takes place on the light cylinder surface formed by the rotation of a massive black hole carring into rotation the radial magnetic field and the magnetosphere. Observed in gamma, x-ray and radio bands bubbles above and below the galactic plane can be remnants of this bipolar get. The size of the bubble defines the time of the jets start, $simeq 2.4cdot 10^7$ years ago. The jet worked more than $10^7$ years, but less than $2.4cdot10^7$ years.
62 - P.L.Biermann 2000
Introducing a simple Galactic wind model patterned after the solar wind we show that back-tracing the orbits of the highest energy cosmic events suggests that they may all come from the Virgo cluster, and so probably from the active radio galaxy M87. This confirms a long standing expectation. Those powerful radio galaxies that have their relativistic jets stuck in the interstellar medium of the host galaxy, such as 3C147, will then enable us to derive limits on the production of any new kind of particle, expected in some extensions of the standard model in particle physics. New data from HIRES will be crucial in testing the model proposed here.
226 - N. Prantzos 2011
The composition of Galactic Cosmic Rays (GCR) presents strong similarities to the standard (cosmic) composition, but also noticeable differences, the most important being the high isotopic ratio of Ne22/Ne20 which is about 5 times higher in GCR than in the Sun. This ratio provides key information on the GCR origin. We investigate the idea that GCR are accelerated by the forward shocks of supernova explosions, as they run through the presupernova winds of the massive stars and through the interstellar medium. We use detailed wind and core yields of rotating and non-rotating models of massive stars with mass loss, as well as simple models for the properties of the forward shock and of the circumstellar medium. We find that the observed GCR Ne22/Ne20 ratio can be explained if GCR are accelerated only during the early Sedov phase, for shock velocities >1500-1900 km/s. The acceleration efficiency is found to be of the order of 1.e-6 - 1.e-5, i.e. a few particles out of a million encountered by the shock escape the SN at GCR energies. We also show quantitatively that the widely publicized idea that GCR are accelerated in superbubbles fails to account for the high Ne22/Ne20 ratio in GCR
122 - Todor Stanev 2007
We discuss the basic difficulties in understanding the origin of the highest energy particles in the Universe - the ultrahigh energy cosmic rays (UHECR). It is difficult to imagine the sources they are accelerated in. Because of the strong attenuatio n of UHECR on their propagation from the sources to us these sources should be at cosmologically short distance from us but are currently not identified. We also give information of the most recent experimental results including the ones reported at this conference and compare them to models of the UHECR origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا