ﻻ يوجد ملخص باللغة العربية
In an effort to model the observed energy spectrum of Cygnus X-1 as well as its hard X-ray lag by Comptonization in inhomogeneous clouds of hot electrons with spherical geometry and various radial density profiles we discovered that: 1) Plasma clouds with different density profiles will lead to different Comptonization energy spectra even though they have the same optical depth and temperature. On the other hand, clouds with different optical depths can produce the same energy spectra as long as their radial density distributions are properly chosen. Thus by fitting the energy spectrum alone, it is not possible to uniquely determine the optical depth of the Comptonization cloud, let alone its density structure. 2) The phase or time difference as a function of Fourier frequency or period for the X-rays in two energy bands is sensitive to the radial density distribution of the scattering cloud. Comptonization in plasma clouds with non-uniform density profiles can account for the long standing puzzle of the frequency-dependent hard X-ray lags of Cygnus X-1 and other sources. Thus simultaneously fitting the observed spectral and temporal X-ray properties will allow us to probe the density structure of the Comptonizing atmosphere and thereby the dynamics of mass accretion onto the compact object.
This paper has been withdrawn temporarily by the authors, because we are waiting for referee report of the paper submitted to ApJ.
X-ray shots of Cyg X-1 in different energy bands and spectral states have been studied with PCA/RXTE observations. The detailed shot structure is obtained by superposing many shots with one millisecond time bin through aligning their peaks with an im
We present the long term evolution of the timing properties of the black hole candidate Cygnus X-1 in the 0.002-128 Hz frequency range as monitored from 1998 to 2001 with the RXTE. The hard state power spectral density (PSD) is well modeled as the su
We present model fits to the X-ray line spectrum of the well known High Mass X-ray binary Cyg X-3. The primary observational dataset is a spectrum taken with the $Chandra$ X-ray Observatory High Energy Transmission Grating (HETG) in 2006, though we c
A linear dependence of the amplitude of broadband noise variability on flux for GBHC and AGN has been recently shown by Uttley & McHardy (2001). We present the long term evolution of this rms-flux-relation for Cyg X-1 as monitored from 1998-2002 with