ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial distribution of far infrared emission in spiral galaxies I. Relation with radio continuum emission

66   0   0.0 ( 0 )
 نشر من قبل Y. Divakara Mayya
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use high resolution IRAS and 20 cm radio continuum (RC) images of a sample of 22 spiral galaxies to study the correlation between the far infra-red (FIR) and RC emissions within the galactic disks. A combination of exponential and gaussian profiles rather than a single exponential profile is found to be a better representation of the observed intensity profiles in the two bands. The gaussian component, which we show is not due to the effects of limited beam-resolution, contains more than 60% of the total flux in majority of the galaxies. The dominance of the gaussian component suggests that the nuclear star forming regions and the bulge stars are more important contributors to the emission in the two bands, rather than the outer exponential stellar disks. The RC profile is flatter compared to the FIR profile, resulting in a decrease of their ratio, Q60, away from the center. However, the Q60 increases in the extreme outer parts, where the dispersion in the FIR and RC correlation is also higher than in the central regions. The global Q60 and its dispersion match those in the inner parts of the galaxies. These results imply that the observed tight correlation in the global quantities reflects processes in the inner regions only where OB stars and the associated Type II supernovae control the FIR and RC emission. In the outer parts heating of very small dust grains by the old disk stars provides a secondary component in the FIR emission, without associated RC emission. The edge-on galaxy NGC3079 shows extended FIR and RC emissions along its minor axis, probably associated with the nuclear starburst activity.



قيم البحث

اقرأ أيضاً

We study the radial distribution of the temperature of the warm dust and gas-to-dust mass ratios in a sample of 22 spiral galaxies. The heating capabilities of the diffuse interstellar radiation field (ISRF), based on Desert et al. model, are investi gated in 13 of the sample galaxies. In general, the temperature of the warm dust decreases away from the center, reaches a minimum value at the mid-disk and increases again in the outer parts of galaxies. Heating a mixture of small and big grains by the ISRF is able to explain the observed behavior qualitatively. However, ultraviolet photons from recent star formation events are necessary for a detailed matching of the warm dust temperature profiles. Very small grains contribute typically more than 50% to the observed flux at 60 micron beyond half the disk radius in galaxies. Optical depth profiles, derived from the observed 60 micron and warm dust temperature profiles, peak at or close to the galactic center. In 13 of the galaxies, where dust temperature profiles are modeled, we obtain gas-to-dust mass ratio profiles, after correction for the contaminating effects of very small grains. The gas-to-dust mass ratio decreases by a factor of 8 from the center to the optical isophotal radius, where the value approaches the local galactic value. We demonstrate that the observed steep gradient is a result of the over-estimation of the molecular mass, and can be flattened out to within a factor of 2, if the molecular hydrogen mass (H2) is recomputed assuming a metallicity dependent conversion factor from CO intensity to H2 column density. The flattened radial profiles indicate a global gas-to-dust ratio of around 300, which is within a factor of two of the local galactic value.
72 - A. Omar RRI 2005
The Eridanus galaxies follow the well-known radio-FIR correlation. Majority (70%) of these galaxies have their star formation rates below that of the Milky Way. The galaxies having a significant excess of radio emission are identified as low luminosi ty AGNs based on their radio morphologies obtained from the GMRT observations. There are no powerful AGNs (L{20cm} > 10^{23} W Hz^{-1}) in the group. The two most far-infrared and radio luminous galaxies in the group have optical and HI morphologies suggestive of recent tidal interactions. The Eridanus group also has two far-infrared luminous but radio-deficient galaxies. It is believed that these galaxies are observed within a few Myr of the onset of an intense star formation episode after being quiescent for at least a 100 Myr. The upper end of the radio luminosity distribution of the Eridanus galaxies (L_{20cm} ~ 10^{22} W Hz^{-1}) is consistent with that of the field galaxies, other groups, and late-type galaxies in nearby clusters.
We revisit the nature of the FIR/Radio correlation by means of the most recent models for star forming galaxies. We model the IR emission with our population synthesis code, GRASIL (Silva et al. 1998). As for the radio emission, we revisit the simple model of Condon & Yin (1990). We find that a tightFIR/Radio correlation is natural when the synchrotron mechanism dominates over the inverse Compton, and the electrons cooling time is shorter than the fading time of the supernova rate. Observations indicate that both these conditions are met in star forming galaxies. However since the radio non thermal emission is delayed, deviations are expected both in the early phases of a starburst, when the radio thermal component dominates, and in the post-starburst phase, when the bulk of the NT component originates from less massive stars. This delay allows the analysis of obscured starbursts with a time resolution of a few tens of Myrs, unreachable with other star formation indicators. We suggest to complement the analysis of the deviations from the FIR/Radio correlation with the radio slope to obtain characteristic parameters of the burst. The analysis of a sample of compact ULIRGs shows that they are intense but transient starbursts, to which one should not apply usual SF indicators devised for constant SF rates. We also discuss the possibility of using the q- radio slope diagram to asses the presence of obscured AGN. A firm prediction of the models is an apparent radio excess during the post-starburst phase, which seems to be typical of a class of star forming galaxies in rich cluster cores. We discuss how deviations from the correlation, due to the evolutionary status of the starburst, affect the technique of photometric redshift determination widely used for high-z sources.
196 - T. Diaz-Santos 2010
We present an analysis of the extended mid-infrared (MIR) emission of the Great Observatories All-Sky LIRG Survey (GOALS) sample based on 5-15um low resolution spectra obtained with the IRS on Spitzer. We calculate the fraction of extended emission a s a function of wavelength for the galaxies in the sample, FEE_lambda. We can identify 3 general types of FEE_lambda: one where it is constant, one where features due to emission lines and PAHs appear more extended than the continuum, and a third which is characteristic of sources with deep silicate absorption at 9.7um. More than 30% of the galaxies have a median FEE_lambda larger than 0.5 implying that at least half of their MIR emission is extended. Luminous Infrared Galaxies (LIRGs) display a wide range of FEE in their warm dust continuum (0<=FEE_13.2um<=0.85). The large values of FEE_13.2um that we find in many LIRGs suggest that their extended MIR continuum emission originates in scales up to 10kpc. The mean size of the LIRG cores at 13.2um is 2.6kpc. However, once the LIR of the systems reaches the threshold of ~10^11.8Lsun, all sources become clearly more compact, with FEE_13.2um<=0.2, and their cores are unresolved. Our estimated upper limit for the core size of ULIRGs is less than 1.5kpc. The analysis indicates that the compactness of systems with LIR>~10^11.25Lsun strongly increases in those classified as mergers in their final stage of interaction. The FEE_13.2um is also related to the contribution of an active galactic nucleus (AGN) to the MIR. Galaxies which are more AGN-dominated are less extended, independently of their LIR. We finally find that the extent of the MIR continuum emission is correlated with the far-IR IRAS log(f_60um/f_100um) color. This enables us to place a lower limit to the area in a galaxy from where the cold dust emission may originate, a prediction which can be tested soon with the Herschel Space Telescope.
We present a sub-50 pc-scale analysis of the gravitational lens system SDP.81 at redshift 3.042 using Atacama Large Millimetre/submillimetre Array (ALMA) science verification data. We model both the mass distribution of the gravitational lensing gala xy and the pixelated surface brightness distribution of the background source using a novel Bayesian technique that fits the data directly in visibility space. We find the 1 and 1.3 mm dust emission to be magnified by a factor of u_tot = 17.6+/-0.4, giving an intrinsic total star-formation rate of 315+/-60 M_sol/yr and a dust mass of 6.4+/-1.5*10^8 M_sol. The reconstructed dust emission is found to be non-uniform, but composed of multiple regions that are heated by both diffuse and strongly clumped star-formation. The highest surface brightness region is a ~1.9*0.7 kpc disk-like structure, whose small extent is consistent with a potential size-bias in gravitationally lensed starbursts. Although surrounded by extended star formation, with a density of 20-30+/-10 M_sol/yr/kpc^2, the disk contains three compact regions with densities that peak between 120-190+/-20 M_sol/yr/kpc^2. Such star-formation rate densities are below what is expected for Eddington-limited star-formation by a radiation pressure supported starburst. There is also a tentative variation in the spectral slope of the different star-forming regions, which is likely due to a change in the dust temperature and/or opacity across the source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا