ﻻ يوجد ملخص باللغة العربية
We describe a search of archival data from the Burst and Transient Source Experiment (BATSE). The purpose of the search is to find astronomically interesting transients that did not activate the burst detection (or ``trigger) system onboard the spacecraft. Our search is sensitive to events with peak fluxes (on the 1.024 s time scale) that are lower by a factor of 2 than can be detected with the onboard burst trigger. In a search of 345 days of archival data, we detected 91 events in the 50--300 keV range that resemble classical gamma ray bursts but that did not activate the onboard burst trigger. We also detected 110 low-energy (25--50 keV) events of unknown origins which may include activity from SGR 1806-20 and bursts and flares from X-ray binaries. This paper gives the occurrence times, estimated source directions, durations, peak fluxes, and fluences for the 91 gamma ray burst candidates. The direction and intensity distributions of these bursts imply that the biases inherent in the onboard trigger mechanism have not significantly affected the completeness of the published BATSE gamma ray burst catalogs.
The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detected gamma-ray bursts (GRBs) with a real-time burst detection (or trigger) system running onboard the spacecraft. Under some circumstances, however, a GRB may
We have recently completed a search of 6 years of archival BATSE data for gamma-ray bursts (GRBs) that were too faint to activate the real-time burst detection system running onboard the spacecraft. These non-triggered bursts can be combined with the
The possibility that classical gamma ray bursts (GRB) occasionally repeat from the same locations on the sky provides a critical test of GRB models. There is currently some controversy about whether there is evidence for burst repetition in the BATSE
The detection of six Fast Radio Bursts (FRBs) has recently been reported. FRBs are short duration ($sim$ 1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involv
We present an all-sky search for muon neutrinos produced during the prompt $gamma$-ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos would constitute evidence for ultra-high energy co