ترغب بنشر مسار تعليمي؟ اضغط هنا

High Energy Particles from Monopoles Connected by Strings

341   0   0.0 ( 0 )
 نشر من قبل Martin Xavier
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Monopole-antimonopole pairs connected by strings and monopole-string networks with $N>2$ strings attached to each monopole can be formed at phase transitions in the early universe. In such hybrid defects, monopoles accelerate under the string tension and can reach ultrarelativistic Lorentz factors, $gammagg 1$. We study the radiation of gauge quanta by accelerating monopoles. For monopoles with a chromomagnetic charge, we also discuss the high-energy hadron production through emission of virtual gluons and their subsequent fragmentation into hadrons. The relevant parameter for gauge boson radiation is $M/a$, where $M$ is the boson mass and $a$ is the proper acceleration of the monopole. For $Mll a$, the gauge bosons can be considered as massless and the typical energy of the emitted quanta is $Esimgamma a$. In the opposite limit, $Mgg a$, the radiation power is exponentially suppressed and gauge quanta are emitted with a typical energy $Esimgamma M$ in a narrow range $Delta E/Esim (a/M)^{1/2}$. Cosmological monopole-string networks can produce photons and hadrons of extremely high energies. For a wide range of parameters these energies can be much greater than the Planck scale.

قيم البحث

اقرأ أيضاً

49 - X. Martin , A. Vilenkin 1996
Monopole-antimonopole pairs connected by strings can be formed as topological defects in a sequence of cosmological phase transitions. Such hybrid defects typically decay early in the history of the universe but can still generate an observable backg round of gravitational waves. We study the spectrum of gravitational radiation from these objects both analytically and numerically, concentrating on the simplest case of an oscillating pair connected by a straight string.
We study the formation of monopoles and strings in a model where SU(3) is spontaneously broken to U(2)=[SU(2)times U(1)]/ZZ_2, and then to U(1). The first symmetry breaking generates monopoles with both SU(2) and U(1) charges since the vacuum manifol d is CC P^2. To study the formation of these monopoles, we explicitly describe an algorithm to detect topologically non-trivial mappings on CC P^2. The second symmetry breaking creates ZZ_2 strings linking either monopole-monopole pairs or monopole-antimonopole pairs. When the strings pull the monopoles together they may create stable monopoles of charge 2 or else annihilate. We determine the length distribution of strings and the fraction of monopoles that will survive after the second symmetry breaking. Possible implications for topological defects produced from the spontaneous breaking of even larger symmetry groups, as in Grand Unified models, are discussed.
In cosmological scenarios based on grand unification, string theory or braneworlds, many kinds of topological or non-topological defects, including monopoles and cosmic strings, are predicted to be formed in the early universe. Here we review specifi cally the physics of composite objects involving monopoles tied to strings. There is a wide variety of these, including for example dumbbells and necklaces, depending on how many strings attach to each monopole and on the extent to which the various fluxes are confined to the strings. We also briefly survey the prospects for observing such structures, the existing observational limits, and potential evidence for a cosmological role.
We consider magnetic monopoles and strings that appear in non-supersymmetric $SO(10)$ and $E_6$ grand unified models paying attention to gauge coupling unification and proton decay in a variety of symmetry breaking schemes. The dimensionless string t ension parameter $Gmu$ spans the range $10^{-6}-10^{-30}$, where $G$ is Newtons constant and $mu$ is the string tension. We show how intermediate scale monopoles with mass $sim 10^{13}-10^{14}$ GeV and flux $lesssim 2.8times 10^{-16}$ ${mathrm{cm}^{-2}mathrm{s}^{-1}mathrm{sr}^{-1}}$, and cosmic strings with $Gmu sim 10^{-11}-10^{-10}$ survive inflation and are present in the universe at an observable level. We estimate the gravity wave spectrum emitted from cosmic strings taking into account inflation driven by a Coleman-Weinberg potential. The tensor-to-scalar ratio $r$ lies between $0.06$ and $0.003$ depending on the details of the inflationary scenario.
228 - Liam OBrien , Lorenzo Sorbo 2019
We study the instantons describing the production of particles at the ends of codimension-one objects (strings and struts) in $(2+1)$-dimensional Minkowski and de Sitter spaces. A Minkowskian background allows only for systems with vanishing total ma ss, so that either negative mass particles or negative tension struts are required. On a de Sitter background, on the other hand, we find processes describing the production of string/particle systems with no negative energies involved. We also compute the probabilities of creating and of breaking an infinite cosmic string in de Sitter space. We perform our analysis of the system in de Sitter space employing a generalization of the toroidal coordinate system to the three-sphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا