ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting gamma-ray bursts from M31 with the wide field X-ray cameras on board BeppoSAX

79   0   0.0 ( 0 )
 نشر من قبل Ralph Wijers
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gamma-ray bursters emit a small fraction of their flux in X rays, and because X-ray detectors are often very sensitive they may probe the gamma-ray burst universe more deeply than the current best gamma-ray instruments. On the reasonable assumptions that spectra of bursts observed by BATSE may be used to predict the X-ray fluxes of gamma-ray bursts, and that any corona of bursts around M31 is similar to the one around the Milky Way, we predict the rate at which the wide field cameras on board BeppoSAX should detect bursts from the Milky Way and M31. These rates are such that a one-month observation of M31 would have to either detect bursts from M31 or exclude most galactic models of gamma-ray bursts. (It is shown how the remainder can be dealt with.) Therefore such an observation would settle the long-standing dispute over their location.

قيم البحث

اقرأ أيضاً

We have discovered three certain (SAX J1324.5-6313, 2S 1711-339 and SAX J1828.5-1037) and two likely (SAX J1818.7+1424 and SAX J2224.9+5421) new thermonuclear X-ray burst sources with the BeppoSAX Wide Field Cameras, and observed a second burst ever from a sixth one (2S 0918-549). Four of them (excluding 2S 1711-339 and 2S 0918-549) are newly detected X-ray sources from which we observed single bursts, but no persistent emission. We observe the first 11 bursts ever from 2S 1711-339; persistent flux was detected during the first ten bursts, but not around the last burst. A single burst was recently detected from 2S 0918-549 by Jonker et al.(2001); we observe a second burst showing radius expansion, from which a distance of 4.2 kpc is derived. According to theory, bursts from very low flux levels should last ~100 s. Such is indeed the case for the last burst from 2S 1711-339, the single burst from SAX J1828.5-1037 and the two bursts from 2S 0918-549, but not for the bursts from SAX J1324.5-6313, SAX J1818.7+1424 and SAX J2224.9+5421. The bursts from the latter sources all last ~20 s. We suggest that SAX J1324.5-6313, SAX J1818.7+1424, SAX J1828.$-1037 and SAX J2224.9+5421 are members of the recently proposed class of bursters with distinctively low persistent flux levels, and show that the galactic distribution of this class is compatible with that of the standard low-mass X-ray binaries.
224 - R. Cornelisse 2003
We present an overview of BeppoSAX Wide Field Cameras observations of the nine most frequent type-I X-ray bursters in the Galactic center region. Six years of observations (from 1996 to 2002) have amounted to 7 Ms of Galactic center observations and the detection of 1823 bursts. The 3 most frequent bursters are GX 354-0 (423 bursts), KS 1731-260 (339) and GS 1826-24 (260). These numbers reflect an unique dataset. We show that all sources have the same global burst behavior as a function of luminosity. At the lowest luminosities (L_X<=2E37 erg/s bursts occur quasi-periodically and the burst rate increases linearly with accretion rate (clear in e.g. GS 1826-24 and KS 1731-260). At L_pers=2E37 erg/s the burst rate drops by a factor of five. This corresponds to the transition from, on average, a hydrogen-rich to a pure helium environment in which the flashes originate that are responsible for the bursts. At higher luminosities the bursts recur irregularly; no bursts are observed at the highest luminosities. Our central finding is that most of the trends in bursting behavior are driven by the onset of stable hydrogen burning in the neutron star atmosphere. Furthermore, we notice three new observational fact which are difficult to explain with current burst theory: the presence of short pure-helium bursts at the lowest accretion regimes, the bimodal distribution of peak burst rates, and an accretion rate that is ten times higher than predicted at which the onset of stable hydrogen burning occurs. Finally, we note that our investigation is the first to signal quasi-periodic burst recurrence in KS 1731-260, and a clear proportionality between the frequency of the quasi-periodicity and the persistent flux in GS 1826-24 and KS 1731-260.
477 - John Heise , Jean in t Zand 2001
We discuss three classes of x-ray transients to highlight three new types of transients found with the Wide Field Cameras onboard BeppoSAX. First there are the transients related to Low Mass X-ray Binaries in outburst, typically lasting weeks to mont hs and reaching luminosities of the Eddington limit for a few solar masses. Recently another subclass of outbursts in such binaries has been discovered, which are an order of magnitude fainter and last shorter than typical hours to days. We discuss whether they constitute a separate subset of x-ray binaries. A second class of x-ray transients are the x-ray bursts. Thermonuclear explosions on a neutron star (type I x-ray bursts) usually last of order minutes or less. We discovered a second type (called super x-ray bursts) with a duration of several hours. They relate to thermonuclear detonations much deeper in the neutron star atmosphere, possibly burning on the nuclear ashes of normal x-ray bursts. The third class are the enigmatic Fast X-ray Transients occurring at all galactic latitudes. We found that the bright ones are of two types only: either nearby coronal sources (lasting hours) or the socalled x-ray flashes (lasting minutes). The new class, the X-ray flashes, may be a new type of cosmic explosion, intermediate between supernovae and gamma ray bursts, or they may be highly redshifted gamma ray bursts. It thus appears that the three classes of x-ray transients each come in two flavors: long and short.
Swift-XRT observations of the X-ray emission from gamma ray bursts (GRBs) and during the GRB afterglow have led to many new results during the past two years. One of these exciting results is that approximately 1/3-1/2 of GRBs contain detectable X-ra y flares. The mean fluence of the X-ray flares is ~10 times less than that of the initial prompt emission, but in some cases the flare is as energetic as the prompt emission itself. The flares display fast rises and decays, and they sometimes occur at very late times relative to the prompt emission (sometimes as late as 10^5 s after T_0) with very high peak fluxes relative to the underlying afterglow decay that has clearly begun prior to some flares. The temporal and spectral properties of the flares are found to favor models in which flares arise due to the same GRB internal engine processes that spawned the prompt GRB emission. Therefore, both long and short GRB internal engine models must be capable of producing high fluences in the X-ray band at very late times.
The study of the early high-energy emission from both long and short Gamma-ray bursts has been revolutionized by the Swift mission. The rapid response of Swift shows that the non-thermal X-ray emission transitions smoothly from the prompt phase into a decaying phase whatever the details of the light curve. The decay is often categorized by a steep-to-shallow transition suggesting that the prompt emission and the afterglow are two distinct emission components. In those GRBs with an initially steeply-decaying X-ray light curve we are probably seeing off-axis emission due to termination of intense central engine activity. This phase is usually followed, within the first hour, by a shallow decay, giving the appearance of a late emission hump. The late emission hump can last for up to a day, and hence, although faint, is energetically very significant. The energy emitted during the late emission hump is very likely due to the forward shock being constantly refreshed by either late central engine activity or less relativistic material emitted during the prompt phase. In other GRBs the early X-ray emission decays gradually following the prompt emission with no evidence for early temporal breaks, and in these bursts the emission may be dominated by classical afterglow emission from the external shock as the relativistic jet is slowed by interaction with the surrounding circum-burst medium. At least half of the GRBs observed by Swift also show erratic X-ray flaring behaviour, usually within the first few hours. The properties of the X-ray flares suggest that they are due to central engine activity. Overall, the observed wide variety of early high-energy phenomena pose a major challenge to GRB models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا