ترغب بنشر مسار تعليمي؟ اضغط هنا

Projection effects in cluster catalogues

41   0   0.0 ( 0 )
 نشر من قبل Michiel van Haarlem
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. P. van Haarlem




اسأل ChatGPT حول البحث

We investigate the importance of projection effects in the identification of galaxy clusters in 2D galaxy maps and their effect on the estimation of cluster velocity dispersions. A volume limited galaxy catalogue that was derived from a Standard CDM N-body simulation was used. We select clusters using criteria that match those employed in the construction of real cluster catalogues and find that our mock Abell cluster catalogues are heavily contaminated and incomplete. Over one third (34 per cent) of clusters of richness class R>=1 are miclassifications arising from the projection of one or more clumps onto an intrinsically poor cluster. Conversely, 32 per cent of intrinsically rich clusters are missed from the R>=1 catalogues, mostly because of statistical fluctuations in the background count. Selection by X-ray luminosity rather than optical richness reduces, but does not completely eliminate, these problems. Contamination by unvirialised sub-clumps near a cluster leads to a considerable overestimation of the cluster velocity dispersion, even if the analysis is restricted only to galaxies close to the cluster centre. Thus, the distribution of cluster masses - often used to test cosmological models - is a highly unreliable statistic. However, the median value of the distribution is considerably more robust. Improved estimates of the cluster velocity dispersion distribution require constructing new cluster catalogues in which clusters are defined according to the number of galaxies within a radius about three times smaller than the Abell radius.


قيم البحث

اقرأ أيضاً

The cosmological utility of galaxy cluster catalogues is primarily limited by our ability to calibrate the relation between halo mass and observable mass proxies such as cluster richness, X-ray luminosity or the Sunyaev-Zeldovich signal. Projection e ffects are a particularly pernicious systematic effect that can impact observable mass proxies; structure along the line of sight can both bias and increase the scatter of the observable mass proxies used in cluster abundance studies. In this work, we develop an empirical method to characterize the impact of projection effects on redMaPPer cluster catalogues. We use numerical simulations to validate our method and illustrate its robustness. We demonstrate that modeling of projection effects is a necessary component for cluster abundance studies capable of reaching $approx 5%$ mass calibration uncertainties (e.g. the Dark Energy Survey Year 1 sample). Specifically, ignoring the impact of projection effects in the observable--mass relation --- i.e. marginalizing over a log-normal model only --- biases the posterior of the cluster normalization condition $S_8 equiv sigma_8 (Omega_{rm m}/0.3)^{1/2}$ by $Delta S_8 =0.05$, more than twice the uncertainty in the posterior for such an analysis.
Up to now, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function (PSF) of the ROSAT satel lite limits the amount of spatial information of the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXCJ2306.6-1319, ZwCl1665 and RXCJ0034.6-0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample ($f_textrm{X,500}geq 5times10^{-12}$ erg s$^{-1}$ cm$^{-2}$ in the $0.1-2.4$ keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually 7 and not 3. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster-cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected.
55 - J. Myles , D. Gruen , A. B. Mantz 2020
Projection effects, whereby galaxies along the line-of-sight to a galaxy cluster are mistakenly associated with the cluster halo, present a significant challenge for optical cluster cosmology. We use statistically representative spectral coverage of luminous galaxies to investigate how projection effects impact the low-redshift limit of the Sloan Digital Sky Survey (SDSS) redMaPPer galaxy cluster catalogue. Spectroscopic redshifts enable us to differentiate true cluster members from false positives and determine the fraction of candidate cluster members viewed in projection. Our main results can be summarized as follows: first, we show that a simple double-Gaussian model can be used to describe the distribution of line-of-sight velocities in the redMaPPer sample; second, the incidence of projection effects is substantial, accounting for $sim 16$ per cent of the weighted richness for the lowest richness objects; third, projection effects are a strong function of richness, with the contribution in the highest richness bin being several times smaller than for low-richness objects; fourth, our measurement has a similar amplitude to state-of-the-art models, but finds a steeper dependence of projection effects on richness than these models; and fifth, the slope of the observed velocity dispersion--richness relation, corrected for projection effects, implies an approximately linear relationship between the true, three-dimensional halo mass and three-dimensional richness. Our results provide a robust, empirical description of the impact of projection effects on the SDSS redMaPPer cluster sample and exemplify the synergies between optical imaging and spectroscopic data for studies of galaxy cluster astrophysics and cosmology.
An optical cluster finder inevitably suffers from projection effects, where it misidentifies a superposition of galaxies in multiple halos along the line-of-sight as a single cluster. Using mock cluster catalogs built from cosmological N-body simulat ions, we quantify the impact of these projection effects with a particular focus on the observables of interest for cluster cosmology, namely the cluster lensing and the cluster clustering signals. We find that observed clusters, i.e. clusters identified by our cluster finder algorithm, exhibit lensing and clustering signals that deviate from expectations based on a statistically isotropic halo model -- while both signals agree with halo model expectations on small scales, they show unexpected boosts on large scales, by up to a factor of 1.2 or 1.4 respectively. We identify the origin of these boosts as the inherent selection bias of optical cluster finders for clusters embedded within filaments aligned with the line-of-sight, and show that a minority ($sim 30%$) of such clusters within the entire sample is responsible for this observed boost. We discuss the implications of our results on previous studies of optical cluster, as well as prospects for identifying and mitigating projection effects in future cluster cosmology analyses.
We describe the construction of a suite of galaxy cluster mock catalogues from N-body simulations, based on the properties of the new ROSAT-ESO Flux-Limited X-Ray (REFLEX II) galaxy cluster catalogue. Our procedure is based on the measurements of the cluster abundance, and involves the calibration of the underlying scaling relation linking the mass of dark matter haloes to the cluster X-ray luminosity determined in the emph{ROSAT} energy band $0.1-2.4$ keV. In order to reproduce the observed abundance in the luminosity range probed by the REFLEX II X-ray luminosity function ($0.01<L_{X}/(10^{44}{rm erg},{rm s}^{-1}h^{-2})<10$), a mass-X ray luminosity relation deviating from a simple power law is required. We discuss the dependence of the calibration of this scaling relation on the X-ray luminosity and the definition of halo masses and analyse the one- and two-point statistical properties of the mock catalogues. Our set of mock catalogues provides samples with self-calibrated scaling relations of galaxy clusters together with inherent properties of flux-limited surveys. This makes them a useful tool to explore different systematic effects and statistical methods involved in constraining both astrophysical and cosmological information from present and future galaxy cluster surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا