ترغب بنشر مسار تعليمي؟ اضغط هنا

Coronal X-Ray Emission of HD35850: the ASCA view

265   0   0.0 ( 0 )
 نشر من قبل Stefano Covino
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis of the X-ray data of the young active star HD35850 obtained with ASCA and ROSAT. Our main goal was to see if there is a difference in the elemental abundances of active stars between young and more evolved objects. A two temperature plasma with subsolar abundances, of the order of Z = 0.15 - 0.3, is required to fit the SIS spectra. Similar results are obtained from a ROSAT PSPC observation. Metal abundances of 0.2 - 0.4 the solar value are required to fit both the ASCA and ROSAT data together. From a simultaneous SIS0+SIS1 spectral fit, with 2T plasma models and abundances free to vary in non-solar proportions, we find that, besides N, O and Ne for which we find very low values, all other elements have values relative to solar abundances around 0.2-0.3. These subsolar abundances are in line with those typically observed in more evolved, active stars like RS CVn and Algol-type binaries. The two temperature values required to fit the ASCA SIS spectra are about 0.5 and 1.0 keV. These temperatures, especially the higher one, are lower with respect to the values found for the RS CVn and Algol binaries or for the young star AB Dor, but higher than other single G/K stars. All our data show that this single, late F-type star is actually a very active source, indirectly confirming that this fast rotating star is probably a young object. In the simultaneous fit of the ASCA+ROSAT data, a third temperature is required. However this is not just an addition of a softer component, but is more a redistribution of the dominant temperatures. Indeed, the range spanned by the three temperatures, from 5 to 15 million degrees, is not very large.


قيم البحث

اقرأ أيضاً

113 - M. Wrigge 2005
We present ASCA SIS observations of the wind-blown bubble NGC6888. Owing to the higher sensitivity of the SIS for higher energy photons compared to the ROSAT PSPC, we are able to detect a T ~ 8x10^6 K plasma component in addition to the T ~ 1.3x10^6 K component previously detected in PSPC observations. No significant temperature variations are detected within NGC6888. Garcia-Segura & Mac Lows (1995) analytical models of WR bubbles constrained by the observed size, expansion velocity, and mass of the nebular shell under-predict the stellar wind luminosity, and cannot reproduce simultaneously the observed X-ray luminosity, spectrum, surface brightness profile, and SIS count rate of NGC6888s bubble interior. The agreement between observations and expectations from models can be improved if one or more of the following ad hoc assumptions are made: (1) the stellar wind luminosity was weaker in the past, (2) the bubble is at a special evolutionary stage and the nebular shell has recently been decelerated to 1/2 of its previous expansion velocity, and (3) the heat conduction between the hot interior and the cool nebular shell is suppressed. Chandra and XMM-Newton observations with high spatial resolution and high sensitivity are needed to determine accurately the physical conditions NGC6888s interior hot gas for critical comparisons with bubble models.
67 - M. Takahashi , et al 2001
We have detected pulsed X-ray emission from the fastest millisecond pulsar known, PSR B1937+21 (P=1.558 msec), with ASCA. The pulsar is detected as a point source above $sim 1.7$ keV, with no indication of nebulosity. The source flux in the 2--10 keV band is found to be $f = (3.7pm 0.6) times 10^{-13}$ erg s$^{-1}$ cm$^{-2}$, which implies an isotropic luminosity of $L_{rm x} = 4 pi D^2 f sim (5.7pm 1.0) times 10^{32} ~(D/3.6 {rm kpc})^2$ erg s$^{-1}$, where D is the distance, and an X-ray efficiency of $sim 5 times 10^{-4}$ relative to the spin-down power of the pulsar. The pulsation is found at the period predicted by the radio ephemeris with a very narrow primary peak, the width of which is about 1/16 phase ($sim 100 mu$s), near the time resolution limit ($61 mu$s) of the observation. The instantaneous flux in the primary peak (1/16 phase interval) is found to be ($4.0pm 0.8) times 10^{-12}$ erg s$^{-1}$ cm$^{-2}$. Although there is an indication for the secondary peak, we consider its statistical significance too low to claim a definite detection. The narrow pulse profile and the detection in the 2--10 keV band imply that the X-ray emission is caused by the magnetospheric particle acceleration. Comparison of X-ray and radio arrival times of pulses indicates, within the timing errors, that the X-ray pulse is coincident with the radio interpulse.
The X-ray emission from the central region of the Galactic plane, |l|<45 deg and |b|<0.4 deg, was studied in the 0.7-10 keV energy band with a spatial resolution of ~3 with the ASCA observatory. We developed a new analysis method for the ASCA data to resolve discrete sources from the extended Galactic ridge X-ray emission (GRXE). We resolved 163 discrete sources with a flux down to 10^-12.5 ergs cm^-2 s^-1 and determined the intensity variations of the GRXE as a function of the Galactic longitude with a spatial resolution of ~1 deg. The longitudinal variation of the GRXE in the energy band above 4 keV shows a large enhancement within |l|<30 deg. This suggests a strong enhancement of X-ray emissivity inside the 4-kpc arms. Searches for identifications of the resolved sources with cataloged X-ray sources and optical stars show that the 66% are unidentified. Spectral analysis of each source shows that a large number of the unidentified sources have hard X-ray spectra. We classified the sources into several groups according to the spectra and analyzed the spectra summed within each group. Possible X-ray origins of these sources are discussed based on the grouping analysis. Also, we derived the LogN-LogS relations of the resolved sources in the energy bands below and above 2 keV. The obtained LogN-LogS relation of the Galactic X-ray sources above 2 keV is represented by a power-law with an index of -0.79+/-0.07. This flat LogN-LogS relation suggests that the spatial distribution of the sources should have an arm-like structure in which the Solar system is included. The integrated surface brightness of the resolved sources is about 10% of the total GRXE in both energy bands. The approximately 90% of the emission remaining is still unresolved.
77 - M. Cappi 1998
shortened) Results obtained from 9 X-ray observations of 3C 273 performed by ASCA are presented (for a total exposure time of about 160 000 s). The analysis and interpretation of the results is complicated by the fact that 4 of these observations wer e used for on-board calibration of the CCDs spectral response. The present analysis shows that, in agreement with official recommendations, a conservative systematic error (at low energies) of about 2-3 x 10**20cm-2 must be assumed when analyzing ASCA SIS data. A soft-excess, with variable flux and/or shape, has been clearly detected as well as flux and spectral variability. An anti-correlation is found between the spectral index and the flux in the 2-10 keV energy range. Fitting the data with the latest available calibration matrices, we also detect an emission line at ~5.4-5.7 keV (~6.3-6.6 keV in the quasar frame) in (only) the two observations with lowest fluxes where it is weak (EW ~ 20-30 eV), narrow and consistent with being produced by Fe K emission from neutral matter. Overall, the observations are qualitatively consistent with a variable, non-thermal X-ray continuum emission, i.e., a power law with Gamma~1.6 (possibly produced in the innermost regions of the radio-optical jet), plus underlying ``Seyfert-like features, i.e., a soft-excess and Fe K line emission due to a reflection component. When the continuum (jet) emission is in a low state, the spectral features produced by the Seyfert-like spectrum (soft-excess, iron line and possibly a steep power law plus reflection continuum) are more easily seen.
We report the results from an ASCA X-ray observation of the powerful Broad Line Radio Galaxy, 3C109. The ASCA spectra confirm our earlier ROSAT detection of intrinsic X-ray absorption associated with the source. The absorbing material obscures a cent ral engine of quasar-like luminosity. The luminosity is variable, having dropped by a factor of two since the ROSAT observations 4 years before. The ASCA data also provide evidence for a broad iron emission line from the source, with an intrinsic FWHM of ~ 120,000 km/s. Interpreting the line as fluorescent emission from the inner parts of an accretion disk, we can constrain the inclination of the disk to be $> 35$ degree, and the inner radius of the disk to be $< 70$ Schwarzschild radii. Our results support unified schemes for active galaxies, and demonstrate a remarkable similarity between the X-ray properties of this powerful radio source, and those of lower luminosity, Seyfert 1 galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا