ﻻ يوجد ملخص باللغة العربية
We present new measurements of the gas-phase C/O abundance ratio in both the NW and SE components of the extremely metal-poor dwarf irregular galaxy I Zw 18, based on ultraviolet spectroscopy of the two H II regions using the Faint Object Spectrograph on the Hubble Space Telescope. We determine values of log C/O = -0.63 +/- 0.10 for the NW component and log C/O = -0.56 +/- 0.09 for the SE component. In comparison, log C/O = -0.37 in the sun, while log C/O = -0.85 +/- 0.07 in the three most metal-poor irregular galaxies measured by Garnett et al. (1995a). Our measurements show that C/O in I Zw 18 is significantly higher than in other comparably metal-poor irregular galaxies, and above predictions for the expected C/O from massive star nucleosynthesis. These results suggest that carbon in I Zw 18 has been enhanced by an earlier population of lower-mass carbon producing stars; this idea is supported by stellar photometry of I Zw 18 and its companion, which demonstrate that the current bursts of massive stars were not the first. Despite its very low metallicity, it is likely that I Zw 18 is not a ``primeval galaxy.
We present measurements of the gas-phase C/O abundance ratio in six H II regions in the spiral galaxies M101 and NGC 2403, based on ultraviolet spectroscopy using the Faint Object Spectrograph on the Hubble Space Telescope. The C/O ratios increase sy
We present new WFPC2 narrow band imaging of the blue compact dwarf galaxy I Zw 18, which is host to the lowest-metallicity HII regions known. Images at H-alpha and H-beta are combined with archival broad band images to allow the study of the ionized
We report new results from an HST archival program to study proper motions in the optical jet of the nearby radio galaxy M87. Using over 13 years of archival imaging, we reach accuracies below 0.1c in measuring the apparent velocities of individual k
We present low-resolution ultraviolet spectra of 14 low redshift (z<0.8) quasars observed with HST/STIS as part of a Snap project to understand the relationship between quasar outflows and luminosity. By design, all observations cover the CIV emissio
Solar system objects with perihelia beyond the orbit of Jupiter ($q >$ 5 AU) are too cold for water ice to generate an appreciable coma via sublimation. Despite this, numerous high perihelion objects (HPOs) including many comets and recently escaped