ﻻ يوجد ملخص باللغة العربية
We analyze the pulse shape of the Crab Nebula pulsar in the near-infrared, optical, ultraviolet, X-ray, and gamma-ray bands, including previously unpublished ROSAT HRI observations. We show that, in addition to the previously known trend for the fluences of the Bridge and Peak 2 to increase with energy relative to the fluence of Peak 1, there is a small but statistically significant trend for both to decrease with energy relative to Peak 1 over the near-infrared range. We find that the phase separation between the two peaks of the pulse profile decreases nearly continuously as a function of energy over 7 decades of energy. We show that the peaks full-width half-maxima are significantly variable over this energy range, but without any clear pattern to the variability. We find that the differences between the energy dependences of the leading and trailing edge half-width half-maxima of both peaks found by Eikenberry et al. (1996a) also continue over 7 decades of energy. We show that the cusped shape of Peak 2 reverses direction between the infrared/optical and X-ray/gamma-ray bands, while the cusped shape of Peak 1 shows weak evidence of reversing direction between the X-ray and gamma-ray bands. Finally, we find that many of the pulse shape parameters show maxima or minima at energies of 0.5-1 eV, implying that an important change in the pulsar emission is occuring near this energy. Many of these complex phenomena are not predicted by current pulsar emission models, and offer new challenges for the development of such models.
We report on a study of the gamma-ray continuum emission from the Crab supernova nebula and on a search for nuclear de-excitation gamma-ray lines. Crab is the brightest continuum source in the 1-10 MeV gamma-ray sky, and its continuum radiation is mo
The well known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally-powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula
The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been used for the past 25 years as a reference source in TeV astronomy, for calibration and verification of new TeV instruments. The High Altitude Water Cherenkov Observatory (H
We observed the Crab pulsar in October 2008 at the Copernico Telescope in Asiago - Cima Ekar with the optical photon counter Aqueye (the Asiago Quantum Eye) which has the best temporal resolution and accuracy ever achieved in the optical domain (hund
We report on the MAXI GSC X-ray monitoring of the Crab nebula and pulsar during the GeV gamma-ray flare for the period of 2010 September 18-24 (MJD 55457-55463) detected by AGILE and Fermi-LAT. There were no significant variations on the pulse phase