ﻻ يوجد ملخص باللغة العربية
We discuss the optical spectrum of a multiply-imaged arc resolved by HST in the $z$=0.175 cluster A2218. The spectrum, obtained with LDSS-2 on the 4.2m William Herschel telescope, reveals the source to be a galaxy at a redshift $z$=2.515 in excellent agreement with the value predicted by Kneib et al. (1996) on the basis of their inversion of a highly-constrained mass model for the lensing cluster. The source is extremely blue in its optical-infrared colours, consistent with active star formation, and the spectrum reveals absorption lines characteristic of a young stellar population. Of particular significance is the absence of Lyman-$alpha$ emission but the presence of a broad Lyman-$alpha$ absorption. The spectrum is similar to that of other, much fainter, galaxies found at high redshift by various techniques and illustrates the important role that lensing can play in detailed studies of the properties of distant galaxies.
The Lynx arc, with a redshift of 3.357, was discovered during spectroscopic follow-up of the z=0.570 cluster RX J0848+4456 from the ROSAT Deep Cluster Survey. The arc is characterized by a very red R-K color and strong, narrow emission lines. Analysi
Using the Australia Telescope Compact Array (ATCA), we conducted a survey of CO J=1-0 and J=2-1 line emission towards strongly lensed high-redshift dusty star forming galaxies (DSFGs) previously discovered with the South Pole Telescope (SPT). Our sam
We present the rest-frame optical spectrum of a strongly lensed galaxy at redshift z =1.7 behind the cluster Abell 1689. We detect the temperature sensitive auroral line [O III] 4363, which allows the first direct metallicity measurement for galaxies
Water ($rm H_{2}O$), one of the most ubiquitous molecules in the universe, has bright millimeter-wave emission lines easily observed at high-redshift with the current generation of instruments. The low excitation transition of $rm H_{2}O$, p$-$$rm H_
We report the detection of a massive neutral gas outflow in the z=2.09 gravitationally lensed Dusty Star-Forming Galaxy HATLASJ085358.9+015537 (G09v1.40), seen in absorption with the OH+(1_1-1_0) transition using spatially resolved (0.5x0.4) Atacama