ترغب بنشر مسار تعليمي؟ اضغط هنا

Line profile variations in $gamma$ Doradus

62   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present data from high-dispersion echelle spectra and simultaneous $uvby$ photometry for $gamma$~Doradus. These data were obtained from several sites during 1994 November as part of the MUSICOS-94 campaign. The star has two closely-spaced periods of about 0.75 d and is the brightest member of a new class of variable early F-type stars. A previously suspected third period, very close to the other two, is confirmed. Previous observations indicated that sudden changes could be expected in the spectrum, but none were found during the campaign. The radial velocities rule out the possibility of a close companion. The phasing between the radial velocity and light curve of the strongest periodic component rules out the starspot model. The only viable mechanism for understanding the variability is nonradial pulsation. We used the method of moments to identify the modes of pulsation of the three periodic components. These appear to be sectorial retrograde modes with spherical harmonic degrees, ($ell, m$), as follows: $f_1$ = (3,3), $f_2$ = (1,1) and $f_4$ = (1,1). The angle of inclination of the star is found to be $i approx 70^circ$.



قيم البحث

اقرأ أيضاً

Abridged: Alpha Virginis is a binary system whose proximity and brightness allow detailed investigations of the internal structure and evolution of stars undergoing time-variable tidal interactions. Previous studies have led to the conclusion that th e internal structure of Spicas primary star may be more centrally condensed than predicted by theoretical models of single stars, raising the possibility that the interactions could lead to effects that are currently neglected in structure and evolution calculations. The key parameters in confirming this result are the values of the orbital eccentricity $e$, the apsidal period $U$, and the primary stars radius, R_1. We analyze the impact that line profile variability has on the derivation of its orbital elements and R_1. We use high SNR observations obtained in 2000, 2008, and 2013 to derive the orbital elements from fits to the radial velocity curves. We produce synthetic line profiles using an ab initio tidal interaction model. Results: The variations in the line profiles can be understood in terms of the tidal flows, whose large-scale structure is relatively fixed in the rotating binary system reference frame. Fits to the radial velocity curves yield $e$=0.108$pm$0.014. However, the analogous RV curves from theoretical line profiles indicate that the distortion in the lines causes the fitted value of $e$ to depend on the argument of periastron; i.e., on the epoch of observation. As a result, the actual value of $e$ may be as high as 0.125. We find that $U$=117.9$pm$1.8, which is in agreement with previous determinations. Using the value $R_1=6.8 R_odot$ derived by Palate et al. (2013) the value of the observational internal structure constant $k_{2,obs}$ is consistent with theory. We confirm the presence of variability in the line profiles of the secondary star.
A strong X-ray outburst was detected in HE1136-2304 in 2014. Accompanying optical spectra revealed that the spectral type has changed from a nearly Seyfert 2 type (1.95), classified by spectra taken 10 and 20 years ago, to a Seyfert 1.5 in our most r ecent observations. We seek to investigate a detailed spectroscopic campaign on the spectroscopic properties and spectral variability behavior of this changing look AGN and compare this to other variable Seyfert galaxies. We carried out a detailed spectroscopic variability campaign of HE1136-2304 with the 10 m Southern African Large Telescope (SALT) between 2014 December and 2015 July. The broad-line region (BLR) of HE1136-2304 is stratified with respect to the distance of the line-emitting regions. The integrated emission line intensities of Halpha, Hbeta, HeI 5876, and HeII 4686 originate at distances of 15.0 (+4.2,-3.8), 7.5 (+4.6,-5.7), 7.3 (+2.8,-4.4), and 3.0 (+5.3,-3.7) light days with respect to the optical continuum at 4570AA. The variability amplitudes of the integrated emission lines are a function of distance to the ionizing continuum source as well. We derived a central black hole mass of 3.8 (+-3.1) 10exp(7) M_solar based on the line widths and distances of the BLR. The outer line wings of all BLR lines respond much faster to continuum variations indicating a Keplerian disk component for the BLR. The response in the outer wings is about two light days shorter than the response of the adjacent continuum flux with respect to the ionizing continuum flux. The vertical BLR structure in HE1136-2304 confirms a general trend that the emission lines of narrow line active galactic nuclei (AGNs) originate at larger distances from the midplane in comparison to AGNs showing broader emission lines. Otherwise, the variability behavior of this changing look AGN is similar to that of other AGN.
According to most literature sources, the amplitude of the pulsational variability observed in gamma Doradus stars does not exceed 0.1 mag in Johnson V. We have analyzed fifteen high-amplitude gamma Doradus stars with photometric peak-to-peak amplitu des well beyond this limit, with the aim of unraveling the mechanisms behind the observed high amplitudes and investigating whether these objects are in any way physically distinct from their low-amplitude counterparts. We have calculated astrophysical parameters and investigated the location of the high-amplitude gamma Doradus stars and a control sample of fifteen low-amplitude objects in the log Teff versus log L diagram. Employing survey data and our own observations, we analyzed the photometric variability of our target stars using discrete Fourier transform. Correlations between the observed primary frequencies, amplitudes and other parameters like effective temperature and luminosity were investigated. The unusually high amplitudes of the high-amplitude gamma Doradus stars can be explained by the superposition of several base frequencies in interaction with their combination and overtone frequencies. Although the maximum amplitude of the primary frequencies does not exceed an amplitude of 0.1 mag, total light variability amplitudes of over 0.3 mag (V) can be attained in this way. Low- and high-amplitude gamma Doradus stars do not appear to be physically distinct in any other respect than their total variability amplitudes but merely represent two ends of the same, uniform group of variables.
Low frequency oscillation, typical for Gamma Doradus g-mode type stellar core sensitive pulsation, as well as higher frequency Delta Scuti type pulsation typical for p-modes, sensitive to the envelope, make HD 8801 a remarkable hybrid pulsator with t he potential to probe a stellar structure over a wide range of radius. In addition HD 8801 is a rare pulsating metallic line (Am) star. We determined the astrophysical fundamental parameters to locate HD 8801 in the HR diagram. We analyzed the element abundances, paying close attention to the errors involved, and confirm the nature of HD 8801 as a metallic line (Am) star. We also determined an upper limit on the magnetic field strength. Our abundance analysis is based on classical techniques, but uses for the final step a model atmosphere calculated with the abundances determined by us. We also discuss spectropolarimetric observations obtained for HD 8801. This object is remarkable in several respects. It is a non-magnetic metallic line (Am) star, pulsating simultaneously in p- and g-modes, but also shows oscillations with periods in between these two domains, whose excitation requires explanation. Overall, the pulsational incidence in unevolved classical Am stars is believed to be quite low; HD 8801 does not conform to this picture. Finally, about 75% of Am stars are located in short-period binaries, but there is no evidence that HD 8801 has a companion.
We present a spectroscopic survey of known and candidate $gamma$,Doradus stars. The high-resolution, high signal-to-noise spectra of 52 objects were collected by five different spectrographs. The spectral classification, atmospheric parameters (teff, $log g$, $xi$), $vsin i$ and chemical composition of the stars were derived. The stellar spectral and luminosity classes were found between G0-A7 and IV-V, respectively. The initial values for teff and logg were determined from the photometric indices and spectral energy distribution. Those parameters were improved by the analysis of hydrogen lines. The final values of teff, logg and $xi$ were derived from the iron lines analysis. The teff values were found between 6000,K and 7900,K, while logg,values range from 3.8 to 4.5,dex. Chemical abundances and $vsin i$ values were derived by the spectrum synthesis method. The $vsin i$ values were found between 5 and 240,km,s$^{-1}$. The chemical abundance pattern of $gamma$,Doradus stars were compared with the pattern of non-pulsating stars. It turned out that there is no significant difference in abundance patterns between these two groups. Additionally, the relations between the atmospheric parameters and the pulsation quantities were checked. A strong correlation between the $vsin i$ and the pulsation periods of $gamma$,Doradus variables was obtained. The accurate positions of the analysed stars in the H-R diagram have been shown. Most of our objects are located inside or close to the blue edge of the theoretical instability strip of $gamma$,Doradus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا