ﻻ يوجد ملخص باللغة العربية
We consider that no mean magnetic field exists during this epoch, but that there is a mean magnetic energy associated with large-scale magnetic inhomogeneities. We study the evolution of these inhomogeneities and their influence on the large scale density structure, by introducing linear perturbations in Maxwell equations, the conservation of momentum-energy equation, and in Einstein field equations. The primordial magnetic field structure is time independent in the linear approximation, only being diluted by the general expansion, so that $vec{B}R^2$ is conserved in comoving coordinates. Magnetic fields have a strong influence on the formation of large-scale structure. Firstly, relatively low fields are able to generate density structures even if they were inexistent at earlier times. Second, magnetic fields act anisotropically more recently, modifying the evolution of individual density clouds. Magnetic flux tubes have a tendency to concentrate photons in filamentary patterns.
In paper I, we obtained an equation for the evolution of density inhomogeneities in a radiation dominated universe when they are affected by magnetic fields. In this second paper we apply this equation to the case in which the subjacent magnetic conf
The nature and origin of turbulence and magnetic fields in the intergalactic space are important problems that are yet to be understood. We propose a scenario in which turbulent flow motions are induced via the cascade of the vorticity generated at c
We use the cosmic microwave background temperature anisotropy to place limits on large-scale magnetic fields in an inhomogeneous (perturbed Friedmann) universe. If no assumptions are made about the spacetime geometry, only a weak limit can be deduced
We construct a consistency test of General Relativity (GR) on cosmological scales. This test enables us to distinguish between the two alternatives to explain the late-time accelerated expansion of the universe, that is, dark energy models based on G
In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of