ترغب بنشر مسار تعليمي؟ اضغط هنا

HST Observations of the Luminous IRAS Source FSC10214+4724: A Gravitationally Lensed Infrared Quasar

99   0   0.0 ( 0 )
 نشر من قبل Peter Eisenhardt
 تاريخ النشر 1995
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an image of the redshift 2.3 IRAS source FSC10214+4724 at 0.8 microns obtained with the HST WFPC2 Planetary Camera. The source appears as an unresolved (< 0.06) arc 0.7 long, with significant substructure along its length. The arc is centered near an elliptical galaxy 1.18 to the north. An unresolved component 100 times fainter than the arc is clearly detected on the opposite side of this galaxy. The most straightforward interpretation is that FSC 10214+4724 is gravitationally lensed by the foreground elliptical galaxy, with the faint component a counterimage of the IRAS source. The brightness of the arc in the HST image is then magnified by ~100 and the intrinsic source diameter is ~0.01 (80 pc) at 0.25 microns rest wavelength. The bolometric luminosity is probably amplified by a smaller factor (~30), yielding an intrinsic luminosity ~2E13 solar luminosities. A detailed lensing model is presented which reproduces the observed morphology and relative flux of the arc and counterimage, and correctly predicts the position angle of the lensing galaxy. The model also predicts reasonable values for the velocity dispersion, mass, and mass-to-light ratio of the lensing galaxy. A redshift for the lensing galaxy of ~0.9 is consistent with the measured surface brightness profile from the image, as well as with the galaxys SED.



قيم البحث

اقرأ أيضاً

Thanks to its sharp view, HST has significantly improved our knowledge of tens of gravitationally lensed quasars in four different respects: (1) confirming their lensed nature; (2) detecting the lensing galaxy responsible for the image splitting; (3) improving the astrometric accuracy on the positions of the unresolved QSO images and of the lens; (4) resolving extended lensed structures from the QSO hosts into faint NIR or optical rings or arcs. These observations have helped to break some degeneracies on the lens potential, to probe the galaxy evolution and to reconstruct the true shape of the QSO host with an increased angular resolution.
We present deep spectroscopic observations of a Lyman-break galaxy candidate (hereafter MACS1149-JD) at $zsim9.5$ with the $textit{Hubble}$ Space Telescope ($textit{HST}$) WFC3/IR grisms. The grism observations were taken at 4 distinct position angle s, totaling 34 orbits with the G141 grism, although only 19 of the orbits are relatively uncontaminated along the trace of MACS1149-JD. We fit a 3-parameter ($z$, F160W mag, and Ly$alpha$ equivalent width) Lyman-break galaxy template to the three least contaminated grism position angles using an MCMC approach. The grism data alone are best fit with a redshift of $z_{mathrm{grism}}=9.53^{+0.39}_{-0.60}$ ($68%$ confidence), in good agreement with our photometric estimate of $z_{mathrm{phot}}=9.51^{+0.06}_{-0.12}$ ($68%$ confidence). Our analysis rules out Lyman-alpha emission from MACS1149-JD above a $3sigma$ equivalent width of 21 AA{}, consistent with a highly neutral IGM. We explore a scenario where the red $textit{Spitzer}$/IRAC $[3.6] - [4.5]$ color of the galaxy previously pointed out in the literature is due to strong rest-frame optical emission lines from a very young stellar population rather than a 4000 AA{} break. We find that while this can provide an explanation for the observed IRAC color, it requires a lower redshift ($zlesssim9.1$), which is less preferred by the $textit{HST}$ imaging data. The grism data are consistent with both scenarios, indicating that the red IRAC color can still be explained by a 4000 AA{} break, characteristic of a relatively evolved stellar population. In this interpretation, the photometry indicate that a $340^{+29}_{-35}$ Myr stellar population is already present in this galaxy only $sim500~mathrm{Myr}$ after the Big Bang.
We present the result of Subaru Telescope multi-band adaptive optics observations of the complex gravitationally lensed quasar SDSS J1405+0959, which is produced by two lensing galaxies. These observations reveal dramatically enhanced morphological d etail, leading to the discovery of an additional object 0. 26 from the secondary lensing galaxy, as well as three collinear clumps located in between the two lensing galaxies. The new object is likely to be the third quasar image, although the possibility that it is a galaxy cannot be entirely excluded. If confirmed via future observations, it would be the first three image lensed quasar produced by two galaxy lenses. In either case, we show based on gravitational lensing models and photometric redshift that the collinear clumps represent merging images of a portion of the quasar host galaxy, with a magnification factor of 15 - 20, depending on the model.
We present new HST WFPC3 imaging of four gravitationally lensed quasars: MG 0414+0534; RXJ 0911+0551; B 1422+231; WFI J2026-4536. In three of these systems we detect wavelength-dependent microlensing, which we use to place constraints on the sizes an d temperature profiles of the accretion discs in each quasar. Accretion disc radius is assumed to vary with wavelength according to the power-law relationship $rpropto lambda^p$, equivalent to a radial temperature profile of $Tpropto r^{-1/p}$. The goal of this work is to search for deviations from standard thin disc theory, which predicts that radius goes as wavelength to the power $p=4/3$. We find a wide range of power-law indices, from $p=1.4^{+0.5}_{-0.4}$ in B 1422+231 to $p=2.3^{+0.5}_{-0.4}$ in WFI J2026-4536. The measured value of $p$ appears to correlate with the strength of the wavelength-dependent microlensing. We explore this issue with mock simulations using a fixed accretion disc with $p=1.5$, and find that cases where wavelength-dependent microlensing is small tend to under-estimate the value of $p$. This casts doubt on previous ensemble single-epoch measurements which have favoured low values using samples of lensed quasars that display only moderate chromatic effects. Using only our systems with strong chromatic microlensing we prefer $p>4/3$, corresponding to shallower temperature profiles than expected from standard thin disc theory.
Strong gravitational lensing provides a powerful probe of the physical properties of quasars and their host galaxies. A high fraction of the most luminous high-redshift quasars was predicted to be lensed due to magnification bias. However, no multipl e imaged quasar was found at z>5 in previous surveys. We report the discovery of J043947.08+163415.7, a strongly lensed quasar at z=6.51, the first such object detected at the epoch of reionization, and the brightest quasar yet known at z>5. High-resolution HST imaging reveals a multiple imaged system with a maximum image separation theta ~ 0.2, best explained by a model of three quasar images lensed by a low luminosity galaxy at z~0.7, with a magnification factor of ~50. The existence of this source suggests that a significant population of strongly lensed, high redshift quasars could have been missed by previous surveys, as standard color selection techniques would fail when the quasar color is contaminated by the lensing galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا