ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation in normal and barred cluster spirals

51   0   0.0 ( 0 )
 نشر من قبل Preprint account
 تاريخ النشر 1995
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An objective prism H alpha survey has shown that there is a population of early type spiral galaxies in nearby clusters with strong central bursts of star formation which could be due to galaxy--galaxy tidal interactions. Such galaxies are rarely found in the field.

قيم البحث

اقرأ أيضاً

Recent observations of ram pressure stripped spiral galaxies in clusters revealed details of the stripping process, i.e., the truncation of all interstellar medium (ISM) phases and of star formation (SF) in the disk, and multiphase star-forming tails . Some stripped galaxies, in particular in merging clusters, develop spectacular star-forming tails, giving them a jellyfish-like appearance. In merging clusters, merger shocks in the intra-cluster medium (ICM) are thought to have overrun these galaxies, enhancing the ambient ICM pressure and thus triggering SF, gas stripping and tail formation. We present idealised hydrodynamical simulations of this scenario, including standard descriptions for SF and stellar feedback. To aid the interpretation of recent and upcoming observations, we focus on particular structures and dynamics in SF patterns in the remaining gas disk and in the near tails, which are easiest to observe. The observed jellyfish morphology is qualitatively reproduced for, both, face-on and edge-on stripping. In edge-on stripping, the interplay between the ICM wind and the disk rotation leads to asymmetries along the ICM wind direction and perpendicular to it. The apparent tail is still part of a highly deformed gaseous and young stellar disk. In both geometries, SF takes place in knots throughout the tail, such that the stars in the tails show no ordered age gradients. Significant SF enhancement in the disk occurs only at radii where the gas will be stripped in due course.
HII regions in the arms of spiral galaxies are indicators of recent star-forming processes. They may have been caused by the passage of the density wave or simply created by other means near the arms. The study of these regions may give us clues to c larifying the controversy over the existence of a triggering scenario, as proposed in the density wave theory. Using H$alpha$ direct imaging, we characterize the HII regions from a sample of three grand design galaxies: NGC5457, NGC628 and NGC6946. Broad band images in R and I were used to determine the position of the arms. The HII regions found to be associated with arms were selected for the study. The age and the star formation rate of these HII regions was obtained using measures on the H$alpha$ line. The distance between the current position of the selected HII regions and the position they would have if they had been created in the centre of the arm is calculated. A parameter, T, which measures whether a region was created in the arm or in the disc, is defined. With the help of the T parameter we determine that the majority of regions were formed some time after the passage of the density wave, with the regions located `behind the arm (in the direction of the rotation of the galaxy) the zone they should have occupied had they been formed in the centre of the arm. The presence of the large number of regions created after the passage of the arm may be explained by the effect of the density wave, which helps to create the star-forming regions after its passage. There is clear evidence of triggering for NGC5457 and a co-rotation radius is proposed. A more modest triggering seems to exist for NGC628 and non significant evidence of triggering are found for NGC6946.
73 - R. D. Grouchy 2010
Nonbarred ringed galaxies are relatively normal galaxies showing bright rings of star formation in spite of lacking a strong bar. This morphology is interesting because it is generally accepted that a typical ring forms when material collects near a resonance, set up by the pattern speed of a bar or bar-like perturbation. Our goal in this paper is to examine whether the ring star formation properties are related to the non-axisymmetric gravity potential in general. For this purpose, we obtained H{alpha} emission line images and calculated the line fluxes and star formation rates (SFRs) for 16 nonbarred SA galaxies and four weakly barred SAB galaxies with rings. For comparison, we combine our observations with a re-analysis of previously published data on five SA, seven SAB, and 15 SB galaxies with rings, three of which are duplicates from our sample. With these data, we examine what role a bar may play in the star formation process in rings. Compared to barred ringed galaxies, we find that the inner ring SFRs and H{alpha}+[N ii] equivalent widths in nonbarred ringed galaxies show a similar range and trend with absolute blue magnitude, revised Hubble type, and other parameters. On the whole, the star formation properties of inner rings, excluding the distribution of H ii regions, are independent of the ring shapes and the bar strength in our small samples. We confirm that the deprojected axis ratios of inner rings correlate with maximum relative gravitational force Q_g; however, if we consider all rings, a better correlation is found when local bar forcing at the radius of the ring, Q_r, is used. Individual cases are described and other correlations are discussed. By studying the physical properties of these galaxies, we hope to gain a better understanding of their placement in the scheme of the Hubble sequence and how they formed rings without the driving force of a bar.
Galaxies migrate from the blue cloud to the red sequence when their star formation is quenched. Here, we report on galaxies quenched by environmental effects and not by mergers or strong AGN as often invoked: They form stars at a reduced rate which i s optically even less conspicuous, and manifest a transition population of blue spirals evolving into S0 galaxies. These optically passive or red spirals are found in large numbers in the STAGES project (and by Galaxy Zoo) in the infall region of clusters and groups.
Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely by a bar potential. The star formation recipes include a density threshold, an efficiency, conversion of gas to star particles, and delayed momentum feedback via supernova explosions. We find that star formation rate (SFR) in a nuclear ring is roughly equal to the mass inflow rate to the ring, while it has a weak dependence on the total gas mass in the ring. The SFR typically exhibits a strong primary burst followed by weak secondary bursts before declining to very small values. The primary burst is associated with the rapid gas infall to the ring due to the bar growth, while the secondary bursts are caused by re-infall of the ejected gas from the primary burst. While star formation in observed rings persists episodically over a few Gyr, the duration of active star formation in our models lasts for only about a half of the bar growth time, suggesting that the bar potential alone is unlikely responsible for gas supply to the rings. When the SFR is low, most star formation occurs at the contact points between the ring and the dust lanes, leading to an azimuthal age gradient of young star clusters. When the SFR is large, on the other hand, star formation is randomly distributed over the whole circumference of the ring, resulting in no apparent azimuthal age gradient. Since the ring shrinks in size with time, star clusters also exhibit a radial age gradient, with younger clusters found closer to the ring. The cluster mass function is well described by a power law, with a slope depending on the SFR. Giant gas clouds in the rings have supersonic internal velocity dispersions and are gravitationally bound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا