ترغب بنشر مسار تعليمي؟ اضغط هنا

The First Data from the MACHO Experiment

48   0   0.0 ( 0 )
 نشر من قبل Dave Bennett
 تاريخ النشر 1993
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. P. Bennett




اسأل ChatGPT حول البحث

MAssive Compact Halo Objects such as brown dwarfs, Jupiters, and black holes are prime candidates to comprise the dark halo of our galaxy. Paczynski noted that objects (dubbed MACHOs) with masses in the range $10^{-6}M_odot < M simlt 100 M_odot$. can be detected via gravitational microlensing of stars in the Magellanic Clouds with the caveat that only about one in $10^6$ stars will be lensed at any given time. Our group has recently begun a search for microlensing using a refurbished 1.27 meter telescope at the Mount Stromlo Observatory in Australia. Since the summer of 1992, we have been imaging up to $10^7$ stars a night in the Large Magellanic Cloud using our large format two-color $3.4times 10^7$ pixel CCD camera. Here I report on our first results based on an analysis of $sim 10^6$ of these stars. Although this is not enough data to make definitive statements about the nature of the dark matter, we are able to conclude that the rate of variable star background events is not larger than the expected MACHO signal.

قيم البحث

اقرأ أيضاً

We report the detection of 45 candidate microlensing events in fields toward the Galactic bulge. These come from the analysis of 24 fields containing 12.6 million stars observed for 190 days in 1993. Many of these events are of extremely high signal to noise and are remarkable examples of gravitational microlensing. The distribution of peak magnifications is shown to be consistent with the microlensing interpretation of these events. Using a sub-sample of 1.3 million ``Clump Giant stars whose distance and detection efficiency are well known, we find 13 events and estimate the microlensing optical depth toward the Galactic Bulge as $tau_{rm bulge} = 3.9 {+ 1.8 atop - 1.2} times 10^{-6}$ averaged over an area of $sim 12$ square degrees centered at Galactic coordinates $ell = 2.55^circ$ and $b = -3.64^circ$. This is similar to the value reported by the OGLE collaboration, and is marginally higher than current theoretical models for $tau_{rm bulge}$. The optical depth is also seen to increase significantly for decreasing $vert bvert$. These results demonstrate that obtaining large numbers of microlensing events toward the Galactic bulge is feasible, and that the study of such events will have important consequences for the structure of the Galaxy and its dark halo.
100 - T. S. Axelrod 1995
The MACHO experiment is searching for dark matter in the halo of the Galaxy by monitoring more than 20 million stars in the LMC and Galactic bulge for gravitational microlensing events. The hardware consists of a 50 inch telescope, a two-color 32 meg apixel ccd camera, and a network of computers. On clear nights the system generates up to 8 GB of raw data and 1 GB of reduced data. The computer system is responsible for all realtime control tasks, for data reduction, and for storing all data associated with each observation in a data base. The subject of this paper is the software system that handles these functions. It is an integrated system controlled by Petri nets that consists of multiple processes communicating via mailboxes and a bulletin board. The system is highly automated, readily extensible, and incorporates flexible error recovery capabilities. It is implemented with C++ in a Unix environment.
The GlueX experiment at Jefferson Lab ran with its first commissioning beam in late 2014 and the spring of 2015. Data were collected on both plastic and liquid hydrogen targets, and much of the detector has been commissioned. All of the detector syst ems are now performing at or near design specifications and events are being fully reconstructed, including exclusive production of $pi^{0}$, $eta$ and $omega$ mesons. Linearly-polarized photons were successfully produced through coherent bremsstrahlung and polarization transfer to the $rho$ has been observed.
The CUPID-Mo experiment is searching for neutrinoless double beta decay in $^{100}$Mo, evaluating the technology of cryogenic scintillating Li$_{2}^{100}$MoO$_4$ detectors for CUPID (CUORE Upgrade with Particle ID). CUPID-Mo detectors feature backgro und suppression using a dual-readout scheme with Li$_{2}$MoO$_4$ crystals complemented by Ge bolometers for light detection. The detection of both heat and scintillation light signals allows the efficient discrimination of $alpha$ from $gamma$&$beta$ events. In this proceedings, we discuss results from the first 2 months of data taking in spring 2019. In addition to an excellent bolometric performance of 6.7$,$keV (FWHM) at 2615$,$keV and an $alpha$ separation of better than 99.9% for all detectors, we report on bulk radiopurity for Th and U. Finally, we interpret the accumulated physics data in terms of a limit of $T_{1/2}^{0 u},> 3times10^{23},$yr for $^{100}$Mo and discuss the sensitivity of CUPID-Mo until the expected end of physics data taking in early 2020.
We investigate the constraints imposed by the first-year WMAP CMB data extended to higher multipole by data from ACBAR, BOOMERANG, CBI and the VSA and by the LSS data from the 2dF galaxy redshift survey on the possible amplitude of primordial isocurv ature modes. A flat universe with CDM and Lambda is assumed, and the baryon, CDM (CI), and neutrino density (NID) and velocity (NIV) isocurvature modes are considered. Constraints on the allowed isocurvature contributions are established from the data for various combinations of the adiabatic mode and one, two, and three isocurvature modes, with intermode cross-correlations allowed. Since baryon and CDM isocurvature are observationally virtually indistinguishable, these modes are not considered separately. We find that when just a single isocurvature mode is added, the present data allows an isocurvature fraction as large as 13+-6, 7+-4, and 13+-7 percent for adiabatic plus the CI, NID, and NIV modes, respectively. When two isocurvature modes plus the adiabatic mode and cross-correlations are allowed, these percentages rise to 47+-16, 34+-12, and 44+-12 for the combinations CI+NID, CI+NIV, and NID+NIV, respectively. Finally, when all three isocurvature modes and cross-correlations are allowed, the admissible isocurvature fraction rises to 57+-9 per cent. The sensitivity of the results to the choice of prior probability distribution is examined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا