ترغب بنشر مسار تعليمي؟ اضغط هنا

Silicates in D-type symbiotic stars: an ISO overview

66   0   0.0 ( 0 )
 نشر من قبل Rodolfo Angeloni
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the IR spectral features of a sample of D-type symbiotic stars. Analyzing unexploited ISO-SWS data, deriving the basic observational parameters of dust bands and comparing them with respect to those observed in other astronomical sources, we try to highlight the effect of environment on grain chemistry and physic. We find strong amorphous silicate emission bands at 10 micron and 18 micron in a large fraction of the sample. The analysis of the 10 micron band, along with a direct comparison with several astronomical sources, reveals that silicate dust in symbiotic stars shows features between the characteristic circumstellar environments and the interstellar medium. This indicates an increasing reprocessing of grains in relation to specific symbiotic behavior of the objects. A correlation between the central wavelength of the 10 and 18 micron dust bands is found. By the modeling of IR spectral lines we investigate also dust grains conditions within the shocked nebulae. Both the unusual depletion values and the high sputtering efficiency might be explained by the formation of SiO moleculae, which are known to be a very reliable shock tracer. We conclude that the signature of dust chemical disturbance due to symbiotic activity should be looked for in the outer, circumbinary, expanding shells where the environmental conditions for grain processing might be achieved. Symbiotic stars are thus attractive targets for new mid-infrared and mm observations.



قيم البحث

اقرأ أيضاً

We present results of period analysis of ASAS, MACHO and OGLE light curves of 79 symbiotic stars classified as S and D-type. The light curves of 58 objects show variations with the orbital period. In case of 34 objects, orbital periods are estimated for the first time, what increases the number of symbiotic stars with known orbital periods by about 64 %. The light curves of 46 objects show, in addition to the long-term or/and orbital variations, short-term variations with time scales of 50-200 days most likely due to stellar pulsations of the cool giant component. We also report eclipse-like minima and outbursts present in many of the light curves.
We have collected continuum data of a sample of D-type symbiotic stars. By modelling their spectral energy distribution in a colliding-wind theoretical scenario we have found the common characteristics to all the systems: 1) at least two dust shells are clearly present, one at sim 1000 K and the other at sim 400 K; they dominate the emission in the IR; 2) the radio data are explained by thermal self-absorbed emission from the reverse shock between the stars; while 3) the data in the long wavelength tail come from the expanding shock outwards the system; 4) in some symbiotic stars, the contribution from the WD in the UV is directly seen. Finally, 5) for some objects soft X-ray emitted by bremsstrahlung downstream of the reverse-shock between the stars are predicted. The results thus confirm the validity of the colliding wind model and the important role of the shocks. The comparison of the fluxes calculated at the nebula with those observed at Earth reveals the distribution throughout the system of the different components, in particular the nebulae and the dust shells. The correlation of shell radii with the orbital period shows that larger radii are found at larger periods. Moreover, the temperatures of the dust shells regarding the sample are found at 1000 K and <=400 K, while, in the case of late giants, they spread more uniformly throughout the same range.
SMP LMC 88 is one of the planetary nebulae (PN) in the Large Magellanic Cloud. We identify in its spectrum Raman scattered O VI lines at 6825 and 7083A. This unambiguously classifies the central object of the nebula as a symbiotic star (SySt). We ide ntified the cold component to be a K-type giant, making this the first D-type (yellow) SySt discovered outside the Galaxy. The photometric variability in SMP LMC 88 resembles the the orbital variability of Galactic D-type SySt with its low amplitude and sinusoidal lightcurve shape. The SySt classification is also supported by the He I diagnostic diagram.
We present a comprehensive and self-consistent modelling of the D type symbiotic star (SS) HD330036 from radio to UV. Within a colliding-wind scenario, we analyse the continuum, line and dust spectra by means of SUMA, a code that simulates the physic al conditions of an emitting gaseous cloud under the coupled effect of ionization from an external radiation source and shocks. We find that the UV lines are emitted from high density gas between the stars downstream of the reverse shock, while the optical lines are emitted downstream of the shock propagating outwards the system. As regards with the continuum SED, three shells are identified in the IR, at 850K, 320 K and 200 K with radii r = 2.8 10^13 cm, 4 10^14$ cm, and 10^15 cm, respectively, adopting a distance to Earth d=2.3 kpc: interestingly, all these shells appear to be circumbinary. The analysis of the unexploited ISO-SWS spectrum reveals that both PAHs and crystalline silicates coexist in HD330036, with PAHs associated to the internal shell at 850 K, and crystalline silicates stored into the cool shells at 320 K and 200 K. Strong evidence that crystalline silicates are shaped in a disk-like structure is derived on the basis of the relative band strengths. Finally, we suggest that shocks can be a reliable mechanism in activating the annealing and the consequent crystallization processes. We show that a consistent interpretation of gas and dust spectra emitted by SS can be obtained by models which accounts for the coupled effect of the photoionizing flux and of shocks. The VLTI/MIDI proposal recently accepted by ESO aims to verify and better constrain some of our results by means of IR interferometric observations.
72 - Ulisse Munari 2019
Any white dwarf or neutron star that accretes enough material from a red giant companion, such that this interaction can be detected at some wavelength, is currently termed Symbiotic Star (typical P(orb)=2-3 years). In the majority of ~400 known syst ems, the WD burns nuclearly at its surface the accreted material, and the resulting high temperature (T(eff)=10(^5)~K) and luminosity (L(hot)=10(^3)-10(^4) Lsun) allow ionization of a large fraction of the cool giants wind, making such symbiotic stars easily recognizable through the whole Galaxy and across the Local Group. X-ray observations are now revealing the existence of a parallel (and larger ?) population of optically-quiet, accreting-only symbiotic stars. Accretion flows and disks, ionization fronts and shock, complex 3D geometries and new evolution channels are gaining relevance and are reshaping our understanding of symbiotic stars. We review the different types of symbiotic stars currently in the family and their variegated outburst behaviors through an unified evolution scheme connecting them all.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا