ترغب بنشر مسار تعليمي؟ اضغط هنا

A Correlation Between Galaxy Morphology and MgII Halo Absorption Strength

301   0   0.0 ( 0 )
 نشر من قبل Glenn Kacprzak
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Glenn G. Kacprzak




اسأل ChatGPT حول البحث

(Abridged) We compared the quantified morphological properties of 37 intermediate redshift MgII absorption selected galaxies to the properties of the absorbing halo gas, observed in the spectra of background quasars. The galaxy morphologies were measured using GIM2D modeling of Hubble Space Telescope WFPC-2 images and the absorbing gas properties were obtained from HIRES/Keck and UVES/VLT quasar spectra. We found a 3.1 sigma correlation between galaxy morphological asymmetries normalized by the quasar-galaxy projected separations, A/D, and the MgII rest-frame equivalent widths. Saturation effects cause increased scatter in the relationship with increasing W_r(2796). We defined a subsample for which the fraction of saturated pixels in the absorption profiles is f_sat<0.5. The correlation strengthened to 3.3 sigma. We also find a paucity of small morphological asymmetries for galaxies selected by MgII absorption as compared to those of the general population of field galaxies, as measured in the Medium Deep Survey. The K-S probability that the two samples are drawn from the same galaxy population is ruled out at a 99.8% confidence level. The A/D-W_r(2796) correlation suggests a connection between the processes that perturb galaxies and the quantity of gas in their halos, normalized by the impact parameter. Since the perturbations are minor, it is clear that dramatic processes or events are not required for a galaxy to have an extended halo; the galaxies appear normal. We suggest that common, more mild processes that populate halos with gas, such as satellite galaxy merging, accretion of the local cosmic web, and longer-range galaxy-galaxy interactions, consequently also induce the observed minor perturbations in the galaxies.



قيم البحث

اقرأ أيضاً

166 - G. G. Kacprzak 2011
We have directly compared MgII halo gas kinematics to the rotation velocities derived from emission/absorption lines of the associated host galaxies. Our 0.096<z<0.148 volume-limited sample comprises 13 ~L* galaxies, with impact parameters of 12-90 k pc from background quasars sight-lines, associated with 11 MgII absorption systems with MgII equivalent widths 0.3< W_r(2796)<2.3A. For only 5/13 galaxies, the absorption resides to one side of the galaxy systemic velocity and trends to align with one side of the galaxy rotation curve. The remainder have absorption that spans both sides of the galaxy systemic velocity. These results differ from those at z~0.5, where 74% of the galaxies have absorption residing to one side of the galaxy systemic velocity. For all the z~0.1 systems, simple extended disk-like rotation models fail to reproduce the full MgII velocity spread, implying other dynamical processes contribute to the MgII kinematics. In fact 55% of the galaxies are counter-rotating with respect to the bulk of the MgII absorption. These MgII host-galaxies are isolated, have low star formation rates (SFRs) in their central regions (<1 Msun/yr), and SFRs per unit area well below those measured for galaxies with strong winds. The galaxy NaID (stellar+ISM) and MgIb (stellar) absorption line ratios are consistent with a predominately stellar origin, implying kinematically quiescent interstellar media. These facts suggest that the kinematics of the MgII absorption halos for our sample of galaxies are not influenced by galaxy--galaxy environmental effects, nor by winds intrinsic to the host galaxies. For these low redshift galaxies, we favor a scenario in which infalling gas accretion provides a gas reservoir for low-to-moderate star formation rates and disk/halo processes.
165 - G. G. Kacprzak 2008
We examine halo gas cross sections and covering fractions, f_c, of intermediate redshift MgII absorption selected galaxies. We computed statistical absorber halo radii, R_x, using current values of dN/dz and Schechter luminosity function parameters, and have compared these values to the distribution of impact parameters and luminosities from a sample of 37 galaxies. For equivalent widths W_r(2796) > 0.3 Ang, we find 43 < R_x < 88 kpc, depending on the lower luminosity cutoff and the slope, beta, of the Holmberg-like luminosity scaling, R propto L^beta. The observed distribution of impact parameters, D, are such that several absorbing galaxies lie at D > R_x and several non-absorbing galaxies lie at D < R_x. We deduced f_c must be less than unity and obtain a mean of <f_c> ~ 0.5 for our sample. Moreover, the data suggest halo radii of MgII absorbing galaxies do not follow a luminosity scaling with beta in the range of 0.2-0.28, if f_c= 1 as previously reported. However, provided f_c~0.5, we find that halo radii can remain consistent with a Holmberg-like luminosity relation with beta ~ 0.2 and R* = R_x/sqrt(f_c)= 110 kpc. No luminosity scaling (beta=0) is also consistent with the observed distribution of impact parameters if f_c < 0.37. The data support a scenario in which gaseous halos are patchy and likely have non-symmetric geometric distributions about the galaxies. We suggest halo gas distributions may not be govern primarily by galaxy mass/luminosity but also by stochastic processes local to the galaxy.
We follow the formation and evolution of bars in N-body simulations of disc galaxies with gas and/or a triaxial halo. We find that both the relative gas fraction and the halo shape play a major role in the formation and evolution of the bar. In gas-r ich simulations, the disc stays near-axisymmetric much longer than in gas-poor ones, and, when the bar starts growing, it does so at a much slower rate. Due to these two effects combined, large-scale bars form much later in gas-rich than in gas-poor discs. This can explain the observation that bars are in place earlier in massive red disc galaxies than in blue spirals. We also find that the morphological characteristics in the bar region are strongly influenced by the gas fraction. In particular, the bar at the end of the simulation is much weaker in gas-rich cases. In no case did we witness bar destruction. Halo triaxiality has a dual influence on bar strength. In the very early stages of the simulation it induces bar formation to start earlier. On the other hand, during the later, secular evolution phase, triaxial haloes lead to considerably less increase of the bar strength than spherical ones. The shape of the halo evolves considerably with time. The inner halo parts may become more elongated, or more spherical, depending on the bar strength. The main body of initially triaxial haloes evolves towards sphericity, but in initially strongly triaxial cases it stops well short of becoming spherical. Part of the angular momentum absorbed by the halo generates considerable rotation of the halo particles that stay located relatively near the disc for long periods of time. Another part generates halo bulk rotation, which, contrary to that of the bar, increases with time but stays small.
138 - G. G. Kacprzak 2009
We obtained ESI/Keck rotation curves of 10 MgII absorption selected galaxies (0.3 < z < 1.0) for which we have WFPC-2/HST images and high resolution HIRES/Keck and UVES/VLT quasar spectra of the MgII absorption profiles. We perform a kinematic compar ison of these galaxies and their associated halo MgII absorption. For all 10 galaxies, the majority of the absorption velocities lie in the range of the observed galaxy rotation velocities. In 7/10 cases, the absorption velocities reside fully to one side of the galaxy systemic velocity and usually align with one arm of the rotation curve. In all cases, a constant rotating thick-disk model poorly reproduces the full spread of observed MgII absorption velocities when reasonably realistic parameters are employed. In 2/10 cases, the galaxy kinematics, star formation surface densities, and absorption kinematics have a resemblance to those of high redshift galaxies showing strong outflows. We find that MgII absorption velocity spread and optical depth distribution may be dependent on galaxy inclination. To further aid in the spatial-kinematic relationships of the data, we apply quasar absorption line techniques to a galaxy (v_c=180 km/s) embedded in LCDM simulations. In the simulations, MgII absorption selects metal enriched halo gas out to roughly 100 kpc from the galaxy, tidal streams, filaments, and small satellite galaxies. Within the limitations inherent in the simulations, the majority of the simulated MgII absorption arises in the filaments and tidal streams and is infalling towards the galaxy with velocities between -200 < v_r < -180 km/s. The MgII absorption velocity offset distribution (relative to the simulated galaxy) spans ~200 km/s with the lowest frequency of detecting MgII at the galaxy systematic velocity.
Relations between the total beta+ Gamow-Teller (GT+) strength and the E2 strength are further examined. It is found that in shell-model calculations for N=Z nuclei, in which changes in deformation are induced by varying the single-particle energies, the total GT+ or GT- strength decreases monotonically with increasing values of the B(E2) from the ground state to the first excited J=2+ state. Similar trends are also seen for the double GT transition amplitude (with some exceptions) and for the spin part of the total M1 strength as a function of B(E2).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا