ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular survey of CRL618

39   0   0.0 ( 0 )
 نشر من قبل J. R. Goicoechea
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the complete data set, model and line identification of a survey of the emission from the C-rich protoplanetary nebula CRL 618 performed with the IRAM-30m telescope in the following frequency ranges: 80.25-115.75 GHz, 131.25-179.25 GHz, and 204.25-275.250 GHz. A selection of lines from different species has been used in previous works to derive the structure of the source, its physical conditions and the chemical abundances in the different gas regions. In this work, we have used this information to run a global simulation of the spectrum in order to check the consistency of the model and to ease the task of line identification. The total number of lines that have a correspondence in both data and model is ~3100, although quite often in this object many lines blend into complex features so that the model, that takes into account line blending, is a key tool at this stage of the analysis. Of all the lines that we have been able to label, ~55% of them belong to the different forms of HC3N, and ~18% to those of HC5N. The density of remaining unidentified features above the 3sigma limit is only one per ~2.1 GHz (74 features), which is unprecedented in the analysis of this type of large millimeter-wave line surveys.

قيم البحث

اقرأ أيضاً

We present a mid-infrared high spectral resolution spectrum of CRL618 in the frequency ranges 778-784 and 1227-1249 cm^-1 (8.01-8.15 and 12.75-12.85 um) taken with the Texas Echelon-cross-Echelle Spectrograph (TEXES) and the Infrared Telescope Facili ty (IRTF). We have identified more than 170 ro-vibrational lines arising from C2H2, HCN, C4H2, and C6H2. We have found no unmistakable trace of C8H2. The line profiles display a complex structure suggesting the presence of polyacetylenes in several components of the circumstellar envelope (CSE). We derive total column densities of 2.5 10^17, 3.1 10^17, 2.1 10^17, 9.3 10^16 cm^-2, and < 5 10^16 cm^-2 for HCN, C2H2, C4H2, C6H2, and C8H2, respectively. The observations indicate that both the rotational and vibrational temperatures in the innermost CSE depend on the molecule, varying from 100 to 350 K for the rotational temperatures and 100 to 500 K for the vibrational temperatures. Our results support a chemistry in the innermost CSE based on radical-neutral reactions triggered by the intense UV radiation field.
We performed Herschel/HIFI observations of several CO lines in the far-infrared/sub-mm in the protoplanetary nebula CRL618. The high spectral resolution provided by HIFI allows measurement of the line profiles. Since the dynamics and structure of the nebula is well known from mm-wave interferometric maps, it is possible to identify the contributions of the different nebular components (fast bipolar outflows, double shells, compact slow shell) to the line profiles. The observation of these relatively high-energy transitions allows an accurate study of the excitation conditions in these components, particularly in the warm ones, which cannot be properly studied from the low-energy lines. The 12CO J=16-15, 10-9, and 6-5 lines are easily detected in this source. 13CO J=10-9 and 6-5 are also detected. Wide profiles showing spectacular line wings have been found, particularly in 12CO 16-15. Other lines observed simultaneously with CO are also shown. Our analysis of the CO high-J transitions, when compared with the existing models, confirms the very low expansion velocity of the central, dense component, which probably indicates that the shells ejected during the last AGB phases were driven by radiation pressure under a regime of maximum transfer of momentum. No contribution of the diffuse halo found from mm-wave data is identified in our spectra, because of its low temperature. We find that the fast bipolar outflow is quite hot, much hotter than previously estimated; for instance, gas flowing at 100 km/s must have a temperature higher than ~ 200 K. Probably, this very fast outflow, with a kinematic age < 100 yr, has been accelerated by a shock and has not yet cooled down. The double empty shell found from mm-wave mapping must also be relatively hot, in agreement with the previous estimate.
In this paper (paper I) we present optical long-slit spectroscopy and imaging of the protoplanetary nebula CRL618. The optical lobes of CRL618 consist of shock-excited gas, which emits many recombination and forbidden lines, and dust, which scatters light from the innermost regions. From the analysis of the scattered Halpha emission, we derive a nebular inclination of i=24+-6 deg. The spectrum of the innermost part of the east lobe (visible as a bright, compact nebulosity close to the star in the Halpha HST image) is remarkably different from that of the shocked lobes but similar to that of the inner HII region, suggesting that this region represents the outermost parts of the latter. We find a non-linear radial variation of the gas velocity along the lobes. The largest projected LSR velocities (~80 km/s) are measured at the tips of the lobes, where the direct images show the presence of compact bow-shaped structures. The velocity of the shocks in CRL618 is in the range ~75-200 km/s, as derived from diagnostic line ratios and line profiles. We report a brightening (weakening) of [OIII]5007AA ([OI]6300AA) over the last ~10 years that may indicate a recent increase in the speed of the exciting shocks. From the analysis of the spatial variation of the nebular extinction, we find a large density contrast between the material inside the lobes and beyond them: the optical lobes seem to be `cavities excavated in the AGB envelope by interaction with a more tenuous post-AGB wind. The electron density, with a mean value n_e~5E3-1E4 cm-3, shows significant fluctuations but no systematic decrease along the lobes, in agreement with most line emission arising in a thin shell of shocked material (the lobe walls) rather than in the post-AGB wind filling the interior of the lobes. (...)
The 100 square degree FCRAO CO survey of the Taurus molecular cloud provides an excellent opportunity to undertake an unbiased survey of a large, nearby, molecular cloud complex for molecular outflow activity. Our study provides information on the ex tent, energetics and frequency of outflows in this region, which are then used to assess the impact of outflows on the parent molecular cloud. The search identified 20 outflows in the Taurus region, 8 of which were previously unknown. Both $^{12}$CO and $^{13}$CO data cubes from the Taurus molecular map were used, and dynamical properties of the outflows are derived. Even for previously known outflows, our large-scale maps indicate that many of the outflows are much larger than previously suspected, with eight of the flows (40%) being more than a parsec long. The mass, momentum and kinetic energy from the 20 outflows are compared to the repository of turbulent energy in Taurus. Comparing the energy deposition rate from outflows to the dissipation rate of turbulence, we conclude that outflows by themselves cannot sustain the observed turbulence seen in the entire cloud. However, when the impact of outflows is studied in selected regions of Taurus, it is seen that locally, outflows can provide a significant source of turbulence and feedback. Five of the eight newly discovered outflows have no known associated stellar source, indicating that they may be embedded Class 0 sources. In Taurus, 30% of Class I sources and 12% of Flat spectrum sources from the Spitzer YSO catalogue have outflows, while 75% of known Class 0 objects have outflows. Overall, the paucity of outflows in Taurus compared to the embedded population of Class I and Flat Spectrum YSOs indicate that molecular outflows are a short-lived stage marking the youngest phase of protostellar life.
We have carried out a near-infrared, narrow-band imaging survey of the Crab Nebula, in the H2 2.12 micron and Br-gamma 2.17 micron lines, using the Spartan Infrared camera on the SOAR Telescope. Over a 2.8 x 5.1 area that encompasses about 2/3 of the full visible extent of the Crab, we detect 55 knots that emit strongly in the H2 line. We catalog the observed properties of these knots. We show that they are in or next to the filaments that are seen in optical-passband emission lines. Comparison to HST [S II] and [O III] images shows that the H2 knots are strongly associated with compact regions of low-ionization gas. We also find evidence of many additional, fainter H2 features, both discrete knots and long streamers following gas that emits strongly in [S II]. A pixel-by-pixel analysis shows that about 6 percent of the Crabs projected surface area has significant H2 emission that correlates with [S II] emission. We measured radial velocities of the [S II] lambda6716 emission lines from 47 of the cataloged knots and find that most are on the far (receding) side of the nebula. We also detect Br-gamma emission. It is right at the limit of our survey, and our Br-gamma filter cuts off part of the expected velocity range. But clearly the Br-gamma emission has a quite different morphology than the H2 knots, following the long linear filaments that are seen in H-alpha and in [O III] optical emission lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا