ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical properties of z~4 LBGs: differences between galaxies with and without Ly-alpha emission

74   0   0.0 ( 0 )
 نشر من قبل Andrea Grazian
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have analysed the physical properties of z~4 Lyman Break Galaxies observed in the GOODS-S survey, in order to investigate the possible differences between galaxies where the Ly-alpha is present in emission, and those where the line is absent or in absorption. The objects have been selected from their optical color and then spectroscopically confirmed by Vanzella et al. (2005). From the public spectra we assessed the nature of the Ly-alpha emission and divided the sample into galaxies with Ly-alpha in emission and objects without Ly-alpha line (i.e. either absent or in absorption). We have then used the complete photometry, from U band to mid infrared from the GOODS-MUSIC database, to study the observational properties of the galaxies, such as UV spectral slopes and optical to mid-infrared colors, and the possible differences between the two samples. Finally through standard spectral fitting tecniques we have determined the physical properties of the galaxies, such as total stellar mass, stellar ages and so on, and again we have studied the possible differences between the two samples. Our results indicate that LBG with Ly-alpha in emission are on average a much younger and less massive population than the LBGs without Ly-alpha emission. Both populations are forming stars very actively and are relatively dust free, although those with line emission seem to be even less dusty on average. We briefly discuss these results in the context of recent models for the evolution of Lyman break galaxies and Ly-alpha emitters.


قيم البحث

اقرأ أيضاً

We investigate the physical and morphological properties of LBGs at z ~2.5 to ~3.5, to determine if and how they depend on the nature and strength of the Lyalpha emission. We selected U-dropout galaxies from the z-detected GOODS MUSIC catalog, by ada pting the classical Lyman Break criteria on the GOODS filter set. We kept only those galaxies with spectroscopic confirmation, mainly from VIMOS and FORS public observations. Using the full multi-wavelength 14-bands photometry, we determined the physical properties of the galaxies, through a standard spectral energy distribution fitting with the updated Charlot & Bruzual (2009) templates. We also added other relevant observations, i.e. the 24mu m observations from Spitzer/MIPS and the 2 MSec Chandra X-ray observations. Finally, using non parametric diagnostics (Gini, Concentration, Asymmetry, M_20 and ellipticity), we characterized the rest-frame UV morphology of the galaxies. We then analyzed how these physical and morphological properties correlate with the presence of the Lyalpha line in the optical spectra. We find that, unlike at higher redshift, the dependence of physical properties on the Lyalpha line is milder: galaxies without Lyalpha in emission tend to be more massive and dustier than the rest of the sample, but all other parameters, ages, SFRs, X-ray emission as well as UV morphology do not depend strongly on the presence of the line emission. A simple scenario where all LBGs have intrinsically high Lyalpha emission, but where dust and neutral hydrogen content (which shape the final appearance of the Lyalpha) depend on the mass of the galaxies, is able to reproduce the majority of the observed properties at z~3. Some modification might be needed to account for the observed evolution of these properties with cosmic epoch, which is also discussed.
We study the average Ly$alpha$ emission associated with high-$z$ strong (log $N$(H I) $ge$ 21) damped Ly$alpha$ systems (DLAs). We report Ly$alpha$ luminosities ($L_{rm Lyalpha}$) for the full as well as various sub-samples based on $N$(H I), $z$, $( r-i)$ colours of QSOs and rest equivalent width of Si II$lambda$1526 line (i.e., $W_{1526}$). For the full sample, we find $L_{rm Lyalpha}$$< 10^{41} (3sigma) rm erg s^{-1}$ with a $2.8sigma$ level detection of Ly$alpha$ emission in the red part of the DLA trough. The $L_{rm Lyalpha}$ is found to be higher for systems with higher $W_{1526}$ with its peak, detected at $geq 3sigma$, redshifted by about 300-400 $rm km s^{-1}$ with respect to the systemic absorption redshift, as seen in Lyman Break Galaxies (LBGs) and Ly$alpha$ emitters. A clear signature of a double-hump Ly$alpha$ profile is seen when we consider $W_{1526} ge 0.4$ AA and $(r-i) < 0.05$. Based on the known correlation between metallicity and $W_{1526}$, we interpret our results in terms of star formation rate (SFR) being higher in high metallicity (mass) galaxies with high velocity fields that facilitates easy Ly$alpha$ escape. The measured Ly$alpha$ surface brightness requires local ionizing radiation that is 4 to 10 times stronger than the metagalactic UV background at these redshifts. The relationship between the SFR and surface mass density of atomic gas seen in DLAs is similar to that of local dwarf and metal poor galaxies. We show that the low luminosity galaxies will contribute appreciably to the stacked spectrum if the size-luminosity relation seen for H I at low-$z$ is also present at high-$z$. Alternatively, large Ly$alpha$ halos seen around LBGs could also explain our measurements.
We describe the results of a new, wide-field survey for z=3.1 Ly-alpha emission-line galaxies (LAEs) in the Extended Chandra Deep Field South (ECDF-S). By using a nearly top-hat 5010 Angstrom filter and complementary broadband photometry from the MUS YC survey, we identify a complete sample of 141 objects with monochromatic fluxes brighter than 2.4E-17 ergs/cm^2/s and observers-frame equivalent widths greater than ~ 80 Angstroms (i.e., 20 Angstroms in the rest-frame of Ly-alpha). The bright-end of this dataset is dominated by x-ray sources and foreground objects with GALEX detections, but when these interlopers are removed, we are still left with a sample of 130 LAE candidates, 39 of which have spectroscopic confirmations. This sample overlaps the set of objects found in an earlier ECDF-S survey, but due to our filters redder bandpass, it also includes 68 previously uncataloged sources. We confirm earlier measurements of the z=3.1 LAE emission-line luminosity function, and show that an apparent anti-correlation between equivalent width and continuum brightness is likely due to the effect of correlated errors in our heteroskedastic dataset. Finally, we compare the properties of z=3.1 LAEs to LAEs found at z=2.1. We show that in the ~1 Gyr after z~3, the LAE luminosity function evolved significantly, with L* fading by ~0.4 mag, the number density of sources with L > 1.5E42 ergs/s declining by ~50%, and the equivalent width scale-length contracting from 70^{+7}_{-5} Angstroms to 50^{+9}_{-6} Angstroms. When combined with literature results, our observations demonstrate that over the redshift range z~0 to z~4, LAEs contain less than ~10% of the star-formation rate density of the universe.
85 - J.U. Fynbo , P. Moller , 1998
The number of damped Ly-alpha absorbers (DLAs) currently known is about 100, but our knowledge of their sizes and morphologies is still very sparse as very few have been detected in emission. Here we present narrow-band and broad-band observations of a DLA in the field of the quasar pair Q0151+048A (qA) and Q0151+048B (qB). These two quasars have very similar redshifts z_em = 1.922, 1.937, respectively, and an angular separation of 3.27 arcsec. The spectrum of qA contains a DLA at z_abs = 1.9342 (close to the emission redshift) which shows an emission line in the trough, detected at 4 sigma. Our narrow-band image confirms this detection and we find Ly-alpha emission from an extended area covering 6x3 arcsec^2, corresponding to 25x12h^-2 kpc^2 (q0=0.5, H0 = 100h km s^-1). The total Ly-alpha luminosity from the DLA is 1.2 x 10^43 h^-2 erg s^-1, which is a factor of several higher than the Ly-alpha luminosity found from other DLAs. The narrow-band image also indicates that qB is not covered by the DLA. This fact, together with the large equivalent width of the emission line from the Ly-alpha cloud, the large luminosity, and the 300 km s^-1 blueshift relative to the DLA, can plausibly be explained if qB is the sourceof a Lyman-limit system. We also consider the relation between DLAs and Lyman-break galaxies (LBGs). If DLAs are gaseous disks surrounding LBGs, and if the apparent brightnesses and impact parameters of the few identified DLAs are representative of the brighter members of the population, then the luminosity distribution of DLAs is nearly flat, and we would expect that some 70% of the galaxy counterparts to DLAs at z=3 are fainter than m_R=28.
We report on deep spectroscopy using LRIS on Keck I and FORS2 on the VLT of a sample of 22 candidate z~6 Lyman Break galaxies (LBGs) selected by the i-z> 1.3 dropout criterion. Redshifts could be measured for eight objects. These redshifts are all in the range z = 5.5 - 6.1, confirming the efficiency of the i-z color selection technique. Six of the confirmed galaxies show Ly-alpha emission. Assuming that the 14 objects without redshifts are z~6 LBGs, but lack detectable Ly-alpha emission lines, we infer that the fraction of Ly-alpha emitting LBGs with Ly-alpha equivalent widths greater than 20 Angstroms among z~6 LBGs is ~30%, similar to that found at z~3. Every Ly-alpha emitting object in our sample is compact with r <= 0.14. Furthermore, all the Ly-alpha emitting objects in our sample are more compact than average relative to the observed size-magnitude relation of a large i-dropout sample (332 candidate z~6 objects). We can reject the hypothesis that the Ly-alpha emitting population is a subset of the rest of the z~6 LBG population at >97% confidence. We speculate the small sizes of Ly-alpha emitting LBGs are due to these objects being less massive than other LBGs at z~6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا