ﻻ يوجد ملخص باللغة العربية
We present a non-parametric method for decomposition of the light of disk galaxies into disk, bulge and bar components. We have developed and tested the method on a sample of 68 disk galaxies for which we have acquired I-band photometry. The separation of disk and bar light relies on the single assumption that the bar is a straight feature with a different ellipticity and position angle from that of the projected disk. We here present the basic method, but recognise that it can be significantly refined. We identify bars in only 47% of the more nearly face-on galaxies in our sample. The fraction of light in the bar has a broad range from 1.3% to 40% of the total galaxy light. If low-luminosity galaxies have more dominant halos, and if halos contribute to bar stability, the luminosity functions of barred and unbarred galaxies should differ markedly; while our sample is small, we find only a slight difference of low significance.
We present a two-dimensional multi-component photometric decomposition of 404 galaxies from the CALIFA Data Release 3. They represent all possible galaxies with no clear signs of interaction and not strongly inclined in the final CALIFA data release.
In this work we analyse the structural and photometric properties of 21 barred simulated galaxies from the Auriga Project. These consist of Milky Way-mass magneto-hydrodynamical simulations in a $Lambda$CDM cosmological context. In order to compare w
We present the results of two-component (disc+bar) and three-component (disc+bar+bulge) multiwavelength 2D photometric decompositions of barred galaxies in five SDSS bands ($ugriz$). This sample of $sim$3,500 nearby ($z<0.06$) galaxies with strong ba
We study the mechanisms and evolutionary phases of bar formation in n-body simulations of a stellar disc and dark matter halo system using harmonic basis function expansion analysis to characterize the dynamical mechanisms in bar evolution. We correl
Selecting centrally quiescent galaxies from the Sloan Digital Sky Survey (SDSS) to create high signal-to-noise (>100) stacked spectra with minimal emission line contamination, we accurately and precisely model the central stellar populations of barre