ﻻ يوجد ملخص باللغة العربية
The first search for ultra-high energy (UHE) neutrinos using a radio telescope was conducted by Hankins, Ekers and OSullivan (1996). This was a search for nanosecond duration radio Cherenkov pulses from electromagnetic cascades initiated by ultra-high energy (UHE) neutrino interactions in the lunar regolith, and was made using a broad-bandwidth receiver fitted to the Parkes radio telescope, Australia. At the time, no simulations were available to convert the null result into a neutrino flux limit. Since then, similar experiments at Goldstone, USA, and Kalyazin, Russia, have also recorded null results, and computer simulations have been used to model the experimental sensitivities of these two experiments and put useful limits on the UHE neutrino flux. Proposed future experiments include the use of broad-bandwidth receivers, making the sensitivity achieved by the Parkes experiment highly relevant to the future prospects of this field. We have therefore calculated the effective aperture for the Parkes experiment and found that when pointing at the lunar limb, the effective aperture at all neutrino energies was superior to single-antenna, narrow-bandwidth experiments, and that the detection threshold was comparable to that of the double-antenna experiment at Goldstone. However, because only a small fraction of the observing time was spent pointing the limb, the Parkes experiment places only comparatively weak limits on the UHE neutrino flux. Future efforts should use multiple telescopes and broad-bandwidth receivers.
We report a limit on the ultra-high-energy neutrino flux based on a non-detection of radio pulses from neutrino-initiated particle cascades in the Moon, in observations with the Parkes radio telescope undertaken as part of the LUNASKA project. Due to
Lunar Cherenkov experiments aim to detect nanosecond pulses of Cherenkov emission produced during UHE cosmic ray or neutrino interactions in the lunar regolith. Pulses from these interactions are dispersed, and therefore reduced in amplitude, during
We use computer simulations to obtain the directional-dependence of the lunar Cherenkov technique for ultra-high energy (UHE) neutrino detection. We calculate the instantaneous effective area of past lunar Cherenkov experiments as a function of neutr
We describe an experiment using the Parkes radio telescope in the 1.2-1.5 GHz frequency range as part of the LUNASKA project, to search for nanosecond-scale pulses from particle cascades in the Moon, which may be triggered by ultra-high-energy astrop
During the past decade there have been several attempts to detect cosmogenic ultra high energy (UHE) neutrinos by searching for radio Cerenkov bursts resulting from charged impact showers in terrestrial ice or the lunar regolith. So far these radio s