ترغب بنشر مسار تعليمي؟ اضغط هنا

A low mass cluster of extremely red galaxies at z=1.10 in the GOODS Southern Field

46   0   0.0 ( 0 )
 نشر من قبل Diaz-Sanchez Anastasio
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the spatial clustering of high redshift (z > 1) extremely red objects (EROs) as a function of photometric redshift in the GOODS Southern Field using public data. A remarkable overdensity of extremely red galaxies (I-Ks > 4) is found at an average photometric redshift z=1.10. Nine objects (six are EROs) within 50 arcsec of the brightest infrared galaxy in this overdensity present spectroscopic redshifts in the range 1.094 < z < 1.101 with a line-of-sight velocity dispersion of 433 km/s typical of an Abell richness class R=0 cluster. Other potential members of this cluster, designated as GCL J0332.2-2752, have been identified using photometric redshifts and the galaxy density profile studied as a function of radius. The mass of the cluster is preliminary estimated at M ~ 5-7 x 10^{13} M_{sun}. Using available Chandra data, we limit the rest-frame X-ray luminosity of the cluster to less than L_X = 7.3 x 10^{42} erg/s (0.5-2.0 keV). This low-mass, low L_X cluster at z > 1 shows the potential of EROs to trace clusters of galaxies at high redshift.



قيم البحث

اقرأ أيضاً

Using U- through Ks-band imaging data in the GOODS-South field, we construct a large, complete sample of 275 ``extremely red objects (EROs; K_s<22.0, R-K_s>3.35; AB), all with deep HST/ACS imaging in B_435, V_606, i_775, and z_850, and well-calibrate d photometric redshifts. Quantitative concentration and asymmetry measurements fail to separate EROs into distinct morphological classes. We therefore visually classify the morphologies of all EROs into four broad types: ``Early (elliptical-like), ``Late (disk galaxies), ``Irregular and ``Other (chain galaxies and low surface brightness galaxies), and calculate their relative fractions and comoving space densities. For a broad range of limiting magnitudes and color thresholds, the relative number of early-type EROs is approximately constant at 33-44%, and the comoving space densities of Early- and Late-type EROs are comparable. Mean rest-frame spectral energy distributions (SEDs) at wavelengths between 0.1 and 1.2 um are constructed for all EROs. The SEDs are extremely similar in their range of shapes, independent of morphological type. The implication is that any differences between the broad-band SEDs of Early-type EROs and the other types are relatively subtle, and there is no robust way of photometrically distinguishing between different morphological types with usual optical/near-infrared photometry.
66 - B. Mobasher 2003
We use extensive multi-wavelength photometric data from the Great Observatories Origins Deep Survey (GOODS) to estimate photometric redshifts for a sample of 434 galaxies with spectroscopic redshifts in the Chandra Deep Field South. Using the Bayesia n method, which incorporates redshift/magnitude priors, we estimate photometric redshifts for galaxies in the range 18 < R (AB) < 25.5, giving an rms scatter of 0.11. The outlier fraction is < 10%, with the outlier-clipped rms being 0.047. We examine the accuracy of photometric redshifts for several, special sub--classes of objects. The results for extremely red objects are more accurate than those for the sample as a whole, with rms of 0.051 and very few outliers (3%). Photometric redshifts for active galaxies, identified from their X-ray emission, have a dispersion of 0.104, with 10% outlier fraction, similar to that for normal galaxies. Employing a redshift/magnitude prior in this process seems to be crucial in improving the agreement between photometric and spectroscopic redshifts.
We present Atacama Large Millimeter/submillimeter Array (ALMA) Band 5 observations of a galaxy at $z=1.91$, GDS24569, in search of molecular gas in its vicinity via the [C I] $^3$P$_1$-$^3$P$_0$ line. GDS24569 is a massive ($log M_*/M_odot=11$) passi vely evolving galaxy, and characterized by compact morphology with an effective radius of $sim0.5$ kpc. We apply two blind detection algorithms to the spectral data cubes, and find no promising detection in or around GDS24569 out to projected distance of $sim320$ kpc, while a narrow tentative line ($4.1 sigma$) is identified at $+1200$ km/s by one of the algorithms. From the non-detection of [C I], we place a $3sigma$ upper limit on molecular hydrogen mass, $sim 7.1 times 10^9 M_odot$, which converts to an extremely low gas-to-stellar mass fraction, $< 5 %$. We conduct a spectral energy distribution modeling by including optical-to-far-infrared data, and find a considerably high ($sim0.1%$) dust-to-stellar mass ratio, $sim10$-$100times$ higher than those of local early-type galaxies. In combination with a previous result of an insufficient number of surrounding satellite galaxies, it is suggested that GDS24569 is unlikely to experience significant size evolution via satellite mergers. We discuss possible physical mechanisms that quenched GDS24569.
81 - Michael C. Liu 2000
We have discovered a concentration of extremely red objects (EROs; R-K>6) in the field of the z=2.69 quasar QSO 1213-0017 (UM 485), which is significantly overabundant compared to the field ERO surface density. The optical/near-IR colors of the EROs and numerous other red galaxies in this field are consistent with elliptical galaxies at z=1-2. HST optical images for a subset of galaxies show regular morphologies, most of them being disky or diffuse and without any obvious evidence for interactions. Ground-based IR images show similar morphologies, indicating any dust reddening in these objects is spatially uniform. Optical spectroscopy with the W. M. Keck Telescope has found that four of the red galaxies lie at <z>=1.31, and a fifth lies in the foreground at z=1.20. Of the <z>=1.31 galaxies, one is a reddened AGN while the remaining three have rest-frame UV absorption-line spectra characteristic of old (few Gyr) stellar populations, similar to the old red galaxy LBDS 53W091 at z=1.55. Including the MgII absorber seen in the QSO spectrum, we find five galaxies at <z>=1.31 spread over 1.5 h_50^{-1} Mpc on the sky. These results suggest we have discovered a coherent structure of old galaxies at high-redshift, possibly associated with a massive galaxy cluster.
63 - Michael C. Liu 1999
We have discovered an excess of extremely red objects (EROs) surrounding the z=2.69 quasar QSO 1213-0017 (UM 485). Optical/IR colors for these galaxies are consistent with z=1-2 ellipticals, and there are at least 5 galaxies with spectroscopic redshi fts at <z>=1.31. Keck optical spectra for 3 of the red galaxies show rest-frame UV breaks resembling local elliptical galaxies. Our initial results suggest a coherent structure in redshift, possibly arising from a massive galaxy cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا