ﻻ يوجد ملخص باللغة العربية
How important is an independent diameter measurement for the determination of stellar parameters of solar-type stars? When coupled with seismic observables, how well can we determine the stellar mass? If we can determine the radius of the star to between 1% and 4%, how does this affect the theoretical uncertainties? Interferometry can provide an independent radius determination and it has been suggested that we should expect at least a 4% precision on such a measurement for nearby solar-type stars. This study aims to provide both qualitative and quantitive answers to these questions for a star such as our Sun, where seismic information will be available. We show that the importance of an independent radius measurement depends on the combination of observables available and the size of the measurement errors. It is important for determining all stellar parameters and in particular the mass, where a good radius measurement can even allow us to determine the mass with a precision better than 2%. Our results also show that measuring the small frequency separation significantly improves the determination of the evolutionary stage and the mixing-length parameter.
Until the last few decades, investigations of stellar interiors had been restricted to theoretical studies only constrained by observations of their global properties and external characteristics. However, in the last thirty years the field has been
We present the first detections by the NASA K2 Mission of oscillations in solar-type stars, using short-cadence data collected during K2 Campaign,1 (C1). We understand the asteroseismic detection thresholds for C1-like levels of photometric performan
The growing interest in solar twins is motivated by the possibility of comparing them directly to the Sun. To carry on this kind of analysis, we need to know their physical characteristics with precision. Our first objective is to use asteroseismolog
In addition to its search for extra-solar planets, the NASA Kepler Mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solartype stars in the Kepler field of view, an ensemble that is large enough
We calculate precise stellar radii and surface gravities from the asteroseismic analysis of over 500 solar-type pulsating stars observed by the Kepler space telescope. These physical stellar properties are compared with those given in the Kepler Inpu