ﻻ يوجد ملخص باللغة العربية
Dissipationless collapses in Modified Newtonian Dynamics (MOND) have been studied by using our MOND particle-mesh N-body code, finding that the projected density profiles of the final virialized systems are well described by Sersic profiles with index m<4 (down to m~2 for a deep-MOND collapse). The simulations provided also strong evidence that phase mixing is much less effective in MOND than in Newtonian gravity. Here we describe ad hoc numerical simulations with the force angular components frozen to zero, thus producing radial collapses. Our previous findings are confirmed, indicating that possible differences in radial orbit instability under Newtonian and MOND gravity are not relevant in the present context.
We present the results of N-body simulations of dissipationless galaxy merging in Modified Newtonian Dynamics (MOND). For comparison, we also studied Newtonian merging between galaxies embedded in dark matter halos, with internal dynamics equivalent
Dissipationless collapses in Modified Newtonian Dynamics (MOND) are studied by using a new particle-mesh N-body code based on our numerical MOND potential solver. We found that low surface-density end-products have shallower inner density profile, fl
We present the analysis of 12 high-resolution galactic rotation curves from The HI Nearby Galaxy Survey (THINGS) in the context of modified Newtonian dynamics (MOND). These rotation curves were selected to be the most reliable for mass modelling, and
The Lambda-CDM cosmological model is succesful at reproducing various independent sets of observations concerning the large-scale Universe. This model is however currently, and actually in principle, unable to predict the gravitational field of a gal
This paper summarises a numerical investigation of phase mixing in time-independent Hamiltonian systems that admit a coexistence of regular and chaotic phase space regions, allowing also for low amplitude perturbations idealised as periodic driving,