ترغب بنشر مسار تعليمي؟ اضغط هنا

Depletion and low gas temperature in the L183 prestellar core : the N2H+ - N2D+ tool

56   0   0.0 ( 0 )
 نشر من قبل Laurent Pagani
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Laurent Pagani




اسأل ChatGPT حول البحث

Context. The study of pre-stellar cores (PSCs) suffers from a lack of undepleted species to trace the gas physical properties in their very dense inner parts. Aims. We want to carry out detailed modelling of N2H+ and N2D+ cuts across the L183 main core to evaluate the depletion of these species and their usefulness as a probe of physical conditions in PSCs. Methods. We have developed a non-LTE (NLTE) Monte-Carlo code treating the 1D radiative transfer of both N2H+ and N2D+, making use of recently published collisional coefficients with He between individual hyperfine levels. The code includes line overlap between hyperfine transitions. An extensive set of core models is calculated and compared with observations. Special attention is paid to the issue of source coupling to the antenna beam. Results. The best fitting models indicate that i) gas in the core center is very cold (7$pm$ 1 K) and thermalized with dust, ii) depletion of N2H+ does occur, starting at densities 5-7E5 cm−3 and reaching a factor of 6 (+13/−3) in abundance, iii) deuterium fractionation reaches ∼70% at the core center, and iv) the density profile is proportional to r^-1 out to ∼4000 AU, and to r^−2 beyond. Conclusions. Our NLTE code could be used to (re-)interpret recent and upcoming observations of N2H+ and N2D+ in many pre-stellar cores of interest, to obtain better temperature and abundance profiles.



قيم البحث

اقرأ أيضاً

392 - Laurent Pagani 2008
Context : Dynamical studies of prestellar cores search for small velocity differences between different tracers. The highest radiation frequency precision is therefore required for each of these species. Aims : We want to adjust the frequency of the first three rotational transitions of N2H+ and N2D+ and extrapolate to the next three transitions. Methods : N2H+ and N2D+ are compared to NH3 the frequency of which is more accurately known and which has the advantage to be spatially coexistent with N2H+ and N2D+ in dark cloud cores. With lines among the narrowests, and N2H+ and NH3 emitting region among the largests, L183 is a good candidate to compare these species. Results : A correction of ~10 kHz for the N2H+ (J:1-0) transition has been found (~0.03 km/s) and similar corrections, from a few m/s up to ~0.05 km/s are reported for the other transitions (N2H+ J:3-2 and N2D+ J:1-0, J:2-1, and J:3-2) compared to previous astronomical determinations. Einstein spontaneous decay coefficients (Aul) are included.
Seven isolated, nearby low-mass starless molecular cloud cores have been observed as part of the Herschel key program Earliest Phases of Star formation (EPoS). By applying a ray-tracing technique to the obtained continuum emission and complementary ( sub)mm emission maps, we derive the physical structure (density, dust temperature) of these cloud cores. We present observations of the 12CO, 13CO, and C18O (2-1) and N2H+ (1-0) transitions towards the same cores. Based on the density and temperature profiles, we apply time-dependent chemical and line-radiative transfer modeling and compare the modeled to the observed molecular emission profiles. CO is frozen onto the grains in the center of all cores in our sample. The level of CO depletion increases with hydrogen density and ranges from 46% up to more than 95% in the core centers in the core centers in the three cores with the highest hydrogen density. The average hydrogen density at which 50% of CO is frozen onto the grains is 1.1+-0.4 10^5 cm^-3. At about this density, the cores typically have the highest relative abundance of N2H+. The cores with higher central densities show depletion of N2H+ at levels of 13% to 55%. The chemical ages for the individual species are on average 2+-1 10^5 yr for 13CO, 6+-3 10^4 yr for C18O, and 9+-2 10^4 yr for N2H+. Chemical modeling indirectly suggests that the gas and dust temperatures decouple in the envelopes and that the dust grains are not yet significantly coagulated. We observationally confirm chemical models of CO-freezeout and nitrogen chemistry. We find clear correlations between the hydrogen density and CO depletion and the emergence of N2H+. The chemical ages indicate a core lifetime of less than 1 Myr.
81 - A. Crapsi 2004
We have undertaken a survey of N2H+ and N2D+ towards 31 low-mass starless cores using the IRAM 30m telescope. Our main objective has been to determine the abundance ratio of N2D+ and N2H+ towards the nuclei of these cores and thus to obtain estimates of the degree of deuterium enrichment, a symptom of advanced chemical evolution according to current models. We find that the N(N2D+)/N(N2H+) ratio is larger in more centrally concentrated cores with larger peak H2 and N2H+ column density than the sample mean. The deuterium enrichment in starless cores is presently ascribed to depletion of CO in the high density (> 3*10^4 cm-3) core nucleus. To substantiate this picture, we compare our results with observations in dust emission at 1.2 mm and in two transitions of C18O. We find a good correlation between deuterium fractionation and N(C18O)/N(H2) for the nuclei of 14 starless cores. We, thus, identified a set of properties that characterize the most evolved, or pre-stellar, starless cores. These are: higher N2H+ and N2D+ column densities, higher N(N2D+)/N(N2H+), more pronounced CO depletion, broader N2H+ lines with infall asymmetry, higher central H2 column densities and a more compact density profile than in the average core. We conclude that this combination of properties gives a reliable indication of the evolutionary state of the core. Seven cores in our sample (L1521F, OphD, L429, L694, L183, L1544 and TMC2) show the majority of these features and thus are believed to be closer to forming a protostar than are the other members of our sample. Finally, we note that the subsample of Taurus cores behaves more homogeneously than the total sample, an indication that the external environment could play an important role in the core evolution.
The CS molecule is known to be absorbed onto dust in the cold and dense conditions, causing it to get significantly depleted in the central region of cores. This study is aimed to investigate the depletion of the CS molecule using the optically thin C$^{34}$S molecular line observations. We mapped five prestellar cores, L1544, L1552, L1689B, L694-2, and L1197 using two molecular lines, C$^{34}$S $(J=2-1)$ and N$_2$H$^+$ $(J=1-0)$ with the NRO 45-m telescope, doubling the number of cores where the CS depletion was probed using C$^{34}$S. In most of our targets, the distribution of C$^{34}$S emission shows features that suggest that the CS molecule is generally depleted in the center of the prestellar cores. The radial profile of the CS abundance with respect to H$_2$ directly measured from the CS emission and the Herschel dust emission indicates that the CS molecule is depleted by a factor of $sim$3 toward the central regions of the cores with respect to their outer regions. The degree of the depletion is found to be even more enhanced by an order of magnitude when the contaminating effect introduced by the presence of CS molecules in the surrounding envelope that lie along the line-of-sight is removed. Except for L1197 which is classified as relatively the least evolved core in our targets based on its observed physical parameters, we found that the remaining four prestellar cores are suffering from significant CS depletion at their central region regardless of the relative difference in their evolutionary status.
278 - Gemma Busquet 2010
We aim at investigating with high angular resolution the NH3/N2H+ ratio toward the high-mass star-forming region AFGL 5142 in order to study whether this ratio behaves similarly to the low-mass case, for which the ratio decreases from starless cores to cores associated with YSOs. CARMA was used to observe the 3.2 mm continuum and N2H+(1-0) emission. We used NH3(1,1) and (2,2), HCO+(1-0) and H13CO+(1-0) data from the literature and we performed a time-dependent chemical modeling of the region. The 3.2 mm continuum emission reveals a dust condensation of ~23 Msun associated with the massive YSOs, deeply embedded in the strongest NH3 core (hereafter central core). The N2H+ emission reveals two main cores, the western and eastern core, located to the west and to the east of the mm condensation, and surrounded by a more extended and complex structure of ~0.5 pc. Toward the central core the N2H+ emission drops significantly, indicating a clear chemical differentiation in the region. We found low values of the NH3/N2H+ ratio ~50-100 toward the western/eastern cores, and high values up to 1000 in the central core. The chemical model indicates that density, and in particular temperature, are key parameters in determining the NH3/N2H+ ratio. The high density and temperature reached in the central core allow molecules like CO to evaporate from grain mantles. The CO desorption causes a significant destruction of N2H+, favoring the formation of HCO+. This result is supported by our observations, which show that N2H+ and HCO+ are anticorrelated in the central core. The observed values of the NH3/N2H+ ratio in the central core can be reproduced by our model for times t~4.5-5.3x10^5 yr (central) and t~10^4-3x10^6 yr (western/eastern). The NH3/N2H+ ratio in AFGL 5142 does not follow the same trend as in regions of low-mass star formation mainly due to the high temperature reached in hot cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا