ترغب بنشر مسار تعليمي؟ اضغط هنا

Shocks and cold fronts in galaxy clusters

84   0   0.0 ( 0 )
 نشر من قبل Maxim Markevitch
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Table of contents (abridged): COLD FRONTS Origin and evolution of merger cold fronts Cold fronts in cluster cool cores . . . Simulations of gas sloshing. Origin of density discontinuity. . . . Effect of sloshing on cluster mass estimates and cooling flows. Zoology of cold fronts COLD FRONTS AS EXPERIMENTAL TOOL Velocities of gas flows Thermal conduction and diffusion across cold fronts Stability of cold fronts . . . Rayleigh-Taylor instability. Kelvin-Helmholtz instability. Possible future measurements using cold fronts . . . Plasma depletion layer and magnetic field. Effective viscosity of ICM. SHOCK FRONTS AS EXPERIMENTAL TOOL Cluster merger shocks Mach number determination Front width Mach cone and reverse shock? Test of electron-ion equilibrium . . . Comparison with other astrophysical plasmas Shocks and cluster cosmic ray population . . . Shock acceleration. Compression of fossil electrons. . . . Yet another method to measure intracluster magnetic field.

قيم البحث

اقرأ أيضاً

Cold Fronts and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological sim ulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and cold fronts in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyrs and it could generate a particular pattern of multiple cold fronts and shocks.
Cold fronts have been observed in a large number of galaxy clusters. Understanding their nature and origin is of primary importance for the investigation of the internal dynamics of clusters. To gain insight on the nature of these features, we carry out a statistical investigation of their occurrence in a sample of galaxy clusters observed with XMM-Newton and we correlate their presence with different cluster properties. We have selected a sample of 45 clusters starting from the B55 flux limited sample by Edge et al. (1990) and performed a systematic search of cold fronts. We find that a large fraction of clusters host at least one cold front. Cold fronts are easily detected in all systems that are manifestly undergoing a merger event in the plane of the sky while the presence of such features in the remaining clusters is related to the presence of a steep entropy gradient, in agreement with theoretical expectations. Assuming that cold fronts in cool core clusters are triggered by minor merger events, we estimate a minimum of 1/3 merging events per halo per Gyr.
A number of merging galaxy clusters shows the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandr a, and allows to study important aspects concerning the physics of the intra-cluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts and eight with uncertain origin. All the six shocks detected have $mathcal{M} < 2$ derived from density and temperature jumps. This work contributed to increase the number of discontinuities detected in clusters and shows the potential of combining diverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.
79 - John ZuHone 2016
The most massive baryonic component of galaxy clusters is the intracluster medium (ICM), a diffuse, hot, weakly magnetized plasma that is most easily observed in the X-ray band. Despite being observed for decades, the macroscopic transport properties of the ICM are still not well-constrained. A path to determine macroscopic ICM properties opened up with the discovery of cold fronts. These were observed as sharp discontinuities in surface brightness and temperature in the ICM, with the property that the brighter (and denser) side of the discontinuity is the colder one. The high spatial resolution of the Chandra X-ray Observatory revealed two puzzles about the cold fronts. First, they should be subject to Kelvin-Helmholtz instabilites, yet in many cases they appear relatively smooth and undisturbed. Second, the width of the interface between the two gas phases is typically narrower than the mean free path of the particles in the plasma, indicating negligible thermal conduction. From the time of their discovery, it was realized that these special characteristics of cold fronts may be used to probe the physical properties of the cluster plasma. In this review, we will discuss the recent simulations of cold front formation and evolution in galaxy clusters, with a focus on those which have attempted to use these features to constrain the physics of the ICM. In particular, we will focus on the effects of magnetic fields, viscosity, and thermal conductivity on the stability properties and long-term evolution of cold fronts. We conclude with a discussion on what important questions remain unanswered, and the future role of simulations and the next generation of X-ray observatories.
Cold fronts have been detected both in merging and in cool core clusters, where little or no sign of a merging event is present. A systematic search of sharp surface brightness discontinuities performed on a sample of 62 galaxy clusters observed with XMM-Newton shows that cold fronts are a common feature in galaxy clusters. Indeed most (if not all) of the nearby clusters (z < 0.04) host a cold front. Understanding the origin and the nature of a such frequent phenomenon is clearly important. To gain insight on the nature of cold fronts in cool core clusters we have undertaken a systematic study of all contact discontinuities detected in our sample, measuring surface brightness, temperature and when possible abundance profiles across the fronts. We measure the Mach numbers for the cold fronts finding values which range from 0.2 to 0.9; we also detect a discontinuities in the metal profile of some clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا