ﻻ يوجد ملخص باللغة العربية
Observations indicate that present-day star formation in the Milky Way disk takes place in stellar ensembles or clusters rather than in isolation. Bound, long lived stellar groups are known as open clusters. They gradually lose stars and in their final evolutionary stages they are severely disrupted leaving an open cluster remnant made of a few stars. In this paper, we study in detail the stellar content and kinematics of the poorly populated star cluster NGC1901. This object appears projected against the Large Magellanic Cloud. The aim of the present work is to derive the current evolutionary status, binary fraction, age and mass of this stellar group. These are fundamental quantities to compare with those from N-body models in order to study the most general topic of star cluster evolution and dissolution.The analysis is performed using wide-field photometry in the UBVI pass-band, proper motions from the UCAC.2 catalog, and 3 epochs of high resolution spectroscopy, as well as results from extensive N-body calculations.The star group NGC1901 is found to be an ensemble of solar metallicity stars, 400+/-100 Myr old, with a core radius of 0.23 pc, a tidal radius of 1.0 pc, and located at 400+/-50 pc from the Sun. Out of 13 confirmed members, only 5 single stars have been found. Its estimated present-day binary fraction is at least 62%. The calculated heliocentric space motion of the cluster is not compatible with possible membership in the Hyades stream.Our results show that NGC1901 is a clear prototype of open cluster remnant characterized by a large value of the binary fraction and a significant depletion of low-mass stars. In the light of numerical simulations, this is compatible with NGC1901 being what remains of a larger system initially made of 500-750 stars.
Whether or not the rich star cluster population in the Large Magellanic Cloud (LMC) is affected by significant disruption during the first few x 10^8 yr of its evolution is an open question and the subject of significant current debate. Here, we revi
Hubble Space Telescope V,I photometry of stars in the Large Magellanic Cloud Cluster NGC 1866 shows a well defined cluster main sequence down to V=25 mag, with little contamination from field or foreground stars. We use the main sequence fitting proc
We use Monte-Carlo simulations, combined with homogeneously determined age and mass distributions based on multi-wavelength photometry, to constrain the cluster formation history and the rate of bound cluster disruption in the Large Magellanic Cloud
The HST/ACS colour-magnitude diagrams (CMD) of the populous LMC star cluster NGC1751 present both a broad main sequence turn-off and a dual clump of red giants. We show that the latter feature is real and associate it to the first appearance of elect
We present {it Hubble Space Telescope} {it V,I} photometry of the central region of the LMC cluster NGC 1866, reaching magnitudes as faint as V=27 mag. We find evidence that the cluster luminosity function shows a strong dependence on the distance fr