ترغب بنشر مسار تعليمي؟ اضغط هنا

An X-ray investigation of Hickson 62

58   0   0.0 ( 0 )
 نشر من قبل Elisabetta De Filippis
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied the X-ray properties of the Hickson Compact Group HCG62, in order to determine the properties and dynamic and evolutionary state of its hot gaseous halo. Our analysis reveals that the X-ray diffuse halo has an extremely complex morphological, thermal and chemical structure. Two deep cavities, due to the presence of the AGN hosted by the central galaxy NGC 4778, are clearly visible in the group X-ray halo. The cavities appear to be surrounded by ridges of cool gas. The group shows a cool core associated with the dominant galaxy. In the outer regions the temperature structure is quite regular, while the metal abundance shows a more patchy distribution, with large Si/O and Si/Fe ratios.



قيم البحث

اقرأ أيضاً

We report that the lowest energy transverse-optic phonon in metallic SnTe softens to near zero energy at the structural transition at $T_C=75 text{~K}$ and importantly show that the energy of this mode below $T_C$ increases as the temperature decreas es. Since the mode is a polar displacement this proves unambiguously that SnTe undergoes a ferroelectric displacement below $T_C$. Concentration gradients and imperfect stoichiometry in large crystals may explain why this was not seen in previous inelastic neutron scattering studies. Despite SnTe being metallic we find that the ferroelectric transition is similar to that in ferroelectric insulators, unmodified by the presence of conduction electrons: we find that (i) the damping of the polar mode is dominated by coupling to acoustic phonons rather than electron-phonon coupling (ii) the transition is almost an ideal continuous transition (iii) comparison with density functional calculations identifies the importance of dipolar-dipolar screening for understanding this behaviour.
73 - S.C. Inam 2003
RXTE observations of the X-ray transient pulsar 2S 1417-62 between 1999 November and 2000 August with a total exposure of $sim 394$ ksec were analyzed. Observations include a main outburst followed by a series of mini outbursts. Changes in pulse morp hology and pulse fraction were found to be related to the changes in X-ray flux. Particularly low X-ray flux regions were found to have significantly lower pulse fractions with different pulse morphologies. The 3-60 keV PCA-HEXTE main outburst spectrum was modeled with an absorbed power law model with high energy cut-off and a Gaussian Iron line complex feature. Using the same spectral model, individual 3-20 keV PCA spectra were found to be softer and less absorbed in low X-ray flux regions between outbursts. Spectral studies showed that hydrogen column density was correlated, and the power law index was anti-correlated with the 3-20 keV X-ray flux. X-ray flux related spectral and timing features in 2S 1417-62 except for low X-ray flux regions were interpreted as a sign of disc accretion with a similar accretion geometry with a varying mass accretion rate ($dot{M}$), whereas spectral and timing features of the low X-ray flux regions were interpreted as a sign of possible temporary accretion geometry change prior to the next periastron where $dot{M}$ increases again to restore the original accretion geometry.
We have investigated three SNRs in the LMC using multi-wavelength data. These SNRs are generally fainter than the known sample and may represent a previously missed population. One of our SNRs is the second LMC remnant analyzed which is larger than a ny Galactic remnant for which a definite size has been established. The analysis of such a large remnant contributes to the understanding of the population of highly evolved SNRs. We have obtained X-ray images and spectra of three of these recently identified SNRs using the XMM-Newton observatory. These data, in conjunction with pre-existing optical emission-line images and spectra, were used to determine the physical conditions of the optical- and X-ray-emitting gas in the SNRs. We have compared the morphologies of the SNRs in the different wavebands. The physical properties of the warm ionized shell were determined from the H-alpha surface brightness and the SNR expansion velocity. The X-ray spectra were fit with a thermal plasma model and the physical conditions of the hot gas were derived from the model fits. Finally, we have compared our observations with simulations of SNR evolution.
Isolated compact groups of galaxies (CGs) present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups observed with the Chandra X-ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of star formation or AGN activity, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the Lx-T relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster Lx-sigma relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that Lx increases with decreasing group HI to dynamical-mass ratio with tentative evidence for a dependance in X-ray luminosity on HI morphology whereby systems with intragroup HI indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the Lx of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.
The structural investigations of nanomaterials motivated by their large variety and diverse set of applications have attracted considerable attention. In particular, the ever-improving machinery, both in laboratory and at large scale facilities, toge ther with the methodical improvements available for studying nanostructures ranging from epitaxial nanomaterials, nanocrystalline thin films and coatings, to nanoparticles and colloidal nanocrystals allows us to gain a more detailed understanding of their structural properties. As the structure essentially determines the physical properties of the materials, this advances the possibilities of structural studies and also enables a deeper understanding of the structure to property relationships. In this special issue entitled Investigation of Nanostructures with X-ray Scattering Techniques five contributions show the recent progress in various research fields. Contributions cover topics as diverse as neutron scattering on magnetic multilayer films, epitaxial orientation of organic thin films, nanoparticle ordering and chemical composition analysis, and the combination of nanofocused X-ray beams with electrical measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا