ترغب بنشر مسار تعليمي؟ اضغط هنا

HD 97048s Circumstellar Environment as Revealed by a HST/ACS Coronagraphic Study of Disk Candidate Stars

50   0   0.0 ( 0 )
 نشر من قبل Ryan Doering
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a coronagraphic scattered-light imaging survey of six young disk candidate stars using the Hubble Space Telescope Advanced Camera for Surveys. The observations made use of the 1.8 occulting spot through the F606W (broad V) filter. Circumstellar material was imaged around HD 97048, a Herbig Ae/Be star located in the Chamaeleon I dark cloud at a distance of 180 pc. The material is seen between ~2 (360 AU) and ~4 (720 AU) from the star in all directions. A V-band azimuthally-averaged radial surface brightness profile peaks at r = 2 with a value of 19.6 +/- 0.2 mag arcsec^-2 and smoothly decreases with projected distance from the star as r^(-3.3 +/- 0.5). An integrated flux of 16.8 +/- 0.1 mag is measured between 2 and 4, corresponding to a scattered-light fractional luminosity lower limit of 8.4 x 10^-4. Filamentary structure resembling spiral arms similar to that seen in Herbig Ae/Be disks is observed. Such structure has been attributed to the influence of orbiting planets or stellar encounters. Average surface brightness upper limits are determined for the five non-detections: HD 34282, HD 139450, HD 158643, HD 159492, and HD 195627. Possible reasons for the non-detections are disks that are too faint or disks hidden by the occulter.

قيم البحث

اقرأ أيضاً

We present ACS/HST coronagraphic observations of HD 100546, a B9.5 star, 103 pc away from the sun, taken in the F435W, F606W, and F814W bands. Scattered light is detected up to 14 from the star. The observations are consistent with the presence of an extended flattened nebula with the same inclination as the inner disk. The well-known ``spiral arms are clearly observed and they trail the rotating disk material. Weaker arms never before reported are also seen. The inter-arm space becomes brighter, but the structures become more neutral in color at longer wavelengths, which is not consistent with models that assume that they are due to the effects of a warped disk. Along the major disk axis, the colors of the scattered-light relative to the star are Delta (F435W-F606W) ~ 0.0--0.2 mags and Delta (F435W-F814W)~0.5--1 mags. To explain these colors, we explore the role of asymmetric scattering, reddening, and large minimum sizes on ISM-like grains. We conclude each of these hypotheses by itself cannot explain the colors. The disk colors are similar to those derived for Kuiper Belt objects, suggesting that the same processes responsible for their colors may be at work here. We argue that we are observing only the geometrically thick, optically thin envelope of the disk, while the optically thick disk responsible for the far-IR emission is undetected. The observed spiral arms are then structures on this envelope. The colors indicate that the extended nebulosity is not a remnant of the infalling envelope but reprocessed disk material.
(Abridged.) We present F435W (B), F606W (Broad V), and F814W (Broad I) coronagraphic images of the debris disk around Beta Pictoris obtained with HSTs Advanced Camera for Surveys. We confirm that the previously reported warp in the inner disk is a di stinct secondary disk inclined by ~5 deg from the main disk. The main disks northeast extension is linear from 80 to 250 AU, but the southwest extension is distinctly bowed with an amplitude of ~1 AU over the same region. Both extensions of the secondary disk appear linear, but not collinear, from 80 to 150 AU. Within ~120 AU of the star, the main disk is ~50% thinner than previously reported. The surface-brightness profiles along the spine of the main disk are fitted with four distinct radial power laws between 40 and 250 AU, while those of the secondary disk between 80 and 150 AU are fitted with single power laws. These discrepancies suggest that the two disks have different grain compositions or size distributions. The F606W/F435W and F814W/F435W flux ratios of the composite disk are nonuniform and asymmetric about both projected axes of the disk. Within ~120 AU, the m_F435W-m_F606W and m_F435W-m_F814W colors along the spine of the main disk are ~10% and ~20% redder, respectively, than those of Beta Pic. These colors increasingly redden beyond ~120 AU, becoming 25% and 40% redder, respectively, than the star at 250 AU. We compare the observed red colors within ~120 AU with the simulated colors of non-icy grains having a radial number density ~r^-3 and different compositions, porosities, and minimum grain sizes. The observed colors are consistent with those of compact or moderately porous grains of astronomical silicate and/or graphite with sizes >0.15-0.20 um, but the colors are inconsistent with the blue colors expected from grains with porosities >90%.
Hubble Space Telescope Advanced Camera for Surveys images of the young binary GG Tauri and its circumbinary disk in V and I bandpasses were obtained in 2002 and are the most detailed of this system to date. The confirm features previously seen in the disk including: a gap apparently caused by shadowing from circumstellar material; an asymmetrical distribution of light about the line of sight on the near edge of the disk; enhanced brightness along the near edge of the disk due to forward scattering; and a compact reflection nebula near the secondary star. New features are seen in the ACS images: two short filaments along the disk; localized but strong variations in disk intensity (gaplets); and a spur or filament extending from the reflection nebulosity near the secondary. The back side of the disk is detected in the V band for the first time. The disk appears redder than the combined light from the stars, which may be explained by a varied distribution of grain sizes. The brightness asymmetries along the disk suggest that it is asymmetrically illuminated by the stars due to extinction by nonuniform circumstellar material or the illuminated surface of the disk is warped by tidal effects (or perhaps both). Localized, time-dependent brightness variations in the disk are also seen.
We present optical and near-infrared high contrast images of the transitional disk HD 100546 taken with the Magellan Adaptive Optics system (MagAO) and the Gemini Planet Imager (GPI). GPI data include both polarized intensity and total intensity imag ery, and MagAO data are taken in Simultaneous Differential Imaging mode at H{alpha}. The new GPI H -band total intensity data represent a significant enhancement in sensitivity and field rotation compared to previous data sets and enable a detailed exploration of substructure in the disk. The data are processed with a variety of differential imaging techniques (polarized, angular, reference, and simultaneous differential imaging) in an attempt to identify the disk structures that are most consistent across wavelengths, processing techniques, and algorithmic parameters. The inner disk cavity at 15 au is clearly resolved in multiple datasets, as are a variety of spiral features. While the cavity and spiral structures are identified at levels significantly distinct from the neighboring regions of the disk under several algorithms and with a range of algorithmic parameters, emission at the location of HD 100546 c varies from point-like under aggressive algorithmic parameters to a smooth continuous structure with conservative parameters, and is consistent with disk emission. Features identified in the HD100546 disk bear qualitative similarity to computational models of a moderately inclined two-armed spiral disk, where projection effects and wrapping of the spiral arms around the star result in a number of truncated spiral features in forward-modeled images.
112 - M. Koutoulaki 2018
HD50138 is a Herbig B[e] star with a circumstellar disc detected at IR and mm wavelength. Its brightness makes it a good candidate for NIR interferometry observations. We aim to resolve, spatially and spectrally, the continuum and hydrogen emission l ines in the 2.12-2.47 micron region, to shed light on the immediate circumstellar environment of the star. VLTI/AMBER K-band observations provide spectra, visibilities, differential phases, and closure phases along three long baselines for the continuum, and HI emission in Br$gamma$ and five high-n Pfund lines. By computing the pure-line visibilities, we derive the angular size of the different line-emitting regions. A simple LTE model was created to constrain the physical conditions of HI emitting region. The continuum region cannot be reproduced by a geometrical 2D elongated Gaussian fitting model. We estimate the size of the region to be 1 au. We find the Br$gamma$ and Pfund lines come from a more compact region of size 0.4 au. The Br$gamma$ line exhibits an S-shaped differential phase, indicative of rotation. The continuum and Br$gamma$ line closure phase show offsets of $sim$-25$pm$5 $^o$ and 20$pm$10$^o$, respectively. This is evidence of an asymmetry in their origin, but with opposing directions. We find that we cannot converge on constraints for the HI physical parameters without a more detailed model. Our analysis reveals that HD50138 hosts a complex circumstellar environment. Its continuum emission cannot be reproduced by a simple disc brightness distribution. Similarly, several components must be evoked to reproduce the interferometric observables within the Br$gamma$, line. Combining the spectroscopic and interferometric data of the Br$gamma$ and Pfund lines favours an origin in a wind region with a large opening angle. Finally, our results point to an evolved source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا