ﻻ يوجد ملخص باللغة العربية
Clusters of galaxies and the large scale filaments that connect neighboring clusters are expected to be sites of acceleration of charged particles and sources of non-thermal radiation from radio frequencies to gamma rays. Gamma rays are particularly interesting targets of investigation, since they may provide precious information on the nature and efficiency of the processes of acceleration and magnetic confinement of hadrons within clusters of galaxies. Here we review the status of viable scenarios that lead to the production of gamma rays from large scale structures and are compatible with the multifrequency observations that are already available. We also discuss the possibility of detection of gamma rays with space-borne telescopes such as GLAST and ground based Cherenkov telescopes, and the physical information that may be gathered from such observations.
In this paper the current status of gamma-ray observations of starburst galaxies from hundreds of MeV up to TeV energies with space-based instruments and ground-based Imaging Atmospheric Cherenkov Telescopes (IACTs) is summarised. The properties of t
Because accretion and merger shocks in clusters of galaxies may accelerate particles to high energies, clusters are candidate sites for the origin of ultra-high-energy (UHE) cosmic-rays. A prediction was presented for gamma-ray emission from a cluste
Fermi has detected gamma-ray emission from eight globular clusters. We suggest that the gamma-ray emission from globular clusters may result from the inverse Compton scattering between relativistic electrons/positrons in the pulsar wind of MSPs in th
The next generation of neutrino and gamma-ray detectors should provide new insights into the creation and propagation of high-energy protons within galaxy clusters, probing both the particle physics of cosmic rays interacting with the background medi
We demonstrate that young star clusters have a $gamma$-ray surface brightness comparable to that of the diffuse Galactic emission (DGE), and estimate that their sky coverage in the direction of the inner Galaxy exceeds unity. We therefore suggest that they comprise a significant fraction of the DGE.