ترغب بنشر مسار تعليمي؟ اضغط هنا

Minkowskis Footprint revisited. Planetary Nebula formation from a single sudden event?

113   0   0.0 ( 0 )
 نشر من قبل Javier Alcolea
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

M1-92 can be considered an archetype of bipolar pre-planetary nebulae. It shows a clear axial symmetry, along with the kinematics and momentum excess characteristic of this class of envelopes around post-AGB stars. By taking advantage of the new extended configuration of the IRAM Plateau de Bure interferometer, we wanted to study the morphology and velocity field of the molecular gas better in this nebula, particularly in its central part. We performed sub-arcsecond resolution interferometric observations of the J=2-1 rotational line 13CO M1-92. We found that the equatorial component is a thin flat disk, which expands radially with a velocity proportional to the distance to the center. The kinetic age of this equatorial flow is very similar to that of the two lobes. The small widths and velocity dispersion in the gas forming the lobe walls confirm that the acceleration responsible for the nebular shape could not last more than 100-120 yr. The present kinematics of the molecular gas can be explained as the result of a single brief acceleration event, after which the nebula reached an expansion velocity field with axial symmetry. In view of the similarity to other objects, we speculate on the possibility that the whole nebula was formed as a result of a magneto-rotational explosion in a common-envelope system.

قيم البحث

اقرأ أيضاً

We present neutral hydrogen, ultraviolet, optical and near-infrared imaging, and optical spectroscopy, of Minkowskis Object (MO), a star forming peculiar galaxy near NGC 541. The observations strengthen evidence that star formation in MO was triggere d by the radio jet from NGC 541. Key new results are the discovery of a 4.9E8 solar mass double HI cloud straddling the radio jet downstream from MO, where the jet changes direction and decollimates; strong detections of MO, also showing double structure, in UV and H-alpha; and numerous HII regions and associated clusters in MO. In UV, MO resembles the radio-aligned, rest-frame UV morphologies in many high redshift radio galaxies (HzRGs), also thought to be caused by jet-induced star formation. MOs stellar population is dominated by a 7.5 Myr-old, 1.9E7 solar mass instantaneous burst, with current star formation rate 0.52 solar masses per year (concentrated upstream from where the HI column density is high). This is unlike the jet-induced star formation in Centaurus A, where the jet interacts with pre-existing cold gas; in MO the HI may have cooled out of a warmer, clumpy intergalactic or interstellar medium as a result of jet interaction, followed by collapse of the cooling clouds and subsequent star formation (consistent with numerical simulations). Since the radio source that triggered star formation in MO is much less luminous, and therefore more common, than powerful HzRGs, and because the environment around MO is not particularly special in terms of abundant dense, cold gas, jet-induced star formation in the early universe might be even more prevalent than previously thought.
The emission nebula around the subdwarf B (sdB) star PHL 932 is currently classified as a planetary nebula (PN) in the literature. Based on a large body of multi-wavelength data, both new and previously published, we show here that this low-excitatio n nebula is in fact a small Stromgren sphere (HII region) in the interstellar medium around this star. We summarise the properties of the nebula and its ionizing star, and discuss its evolutionary status. We find no compelling evidence for close binarity, arguing that PHL 932 is an ordinary sdB star. We also find that the emission nebulae around the hot DO stars PG 0108+101 and PG 0109+111 are also Stromgren spheres in the ISM, and along with PHL 932, are probably associated with the same extensive region of high-latitude molecular gas in Pisces-Pegasus.
We study the Galactic bulge planetary nebula M 2-29 (for which a 3-year eclipse event of the central star has been attributed to a dust disk) using HST imaging and VLT spectroscopy, both long-slit and integral field. The central cavity of M 2-29 is f illed with a decreasing, slow wind. An inner high density core is detected, with radius less than 250 AU, interpreted as a rotating gas/dust disk with a bipolar disk wind. The evaporating disk is argued to be the source of the slow wind. The central star is a source of a very fast wind (1000 km/s). An outer, partial ring is seen in the equatorial plane, expanding at 12 km/s. The azimuthal asymmetry is attributed to mass-loss modulation by an eccentric binary. M 2-29 presents a crucial point in disk evolution, where ionization causes the gas to be lost, leaving a low-mass dust disk behind.
We present the first 3D radiation-hydrodynamic simulations on the formation and evolution of born-again planetary nebulae (PNe), with particular emphasis to the case of HuBi1, the inside-out PN. We use the extensively-tested GUACHO code to simulate t he formation of HuBi1 adopting mass-loss and stellar wind terminal velocity estimates obtained from observations presented by our group. We found that, if the inner shell of HuBi1 was formed by an explosive very late thermal pulse (VLTP) ejecting material with velocities of $sim$300 km s$^{-1}$, the age of this structure is consistent with that of $simeq$200 yr derived from multi-epoch narrow-band imaging. Our simulations predict that, as a consequence of the dramatic reduction of the stellar wind velocity and photon ionizing flux during the VLTP, the velocity and pressure structure of the outer H-rich nebula are affected creating turbulent ionized structures surrounding the inner shell. These are indeed detected in Gran Telescopio Canarias MEGARA optical observations. Furthermore, we demonstrate that the current relatively low ionizing photon flux from the central star of HuBi1 is not able to completely ionize the inner shell, which favors previous suggestions that its excitation is dominated by shocks. Our simulations suggest that the kinetic energy of the H-poor ejecta of HuBi1 is at least 30 times that of the clumps and filaments in the evolved born-again PNe A30 and A78, making it a truly unique VLTP event.
Once classified as an emission line source, the planetary nebula (PN) nature of the source Kn 26 has been only recently recognized in digital sky surveys. To investigate the spectral properties and spatio-kinematical structure of Kn 26, we have obtai ned high spatial-resolution optical and near-IR narrow-band images, high-dispersion long-slit echelle spectra, and intermediate-resolution spectroscopic observations. The new data reveal an hourglass morphology typical of bipolar PNe. A detailed analysis of its morphology and kinematics discloses the presence of a second pair of bipolar lobes, making Kn 26 a new member of the subclass of quadrupolar PNe. The time-lap between the ejection of the two pairs of bipolar lobes is much smaller than their dynamical ages, implying a rapid change of the preferential direction of the central engine. The chemical composition of Kn 26 is particularly unusual among PNe, with a low N/O ratio (as of type II PNe) and a high helium abundance (as of type I PNe), although not atypical among symbiotic stars. Such an anomalous chemical composition may have resulted from the curtail of the time in the Asymptotic Giant Branch by the evolution of the progenitor star through a common envelope phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا