ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio emission physics in the Crab pulsar

78   0   0.0 ( 0 )
 نشر من قبل Ludwig Trepl
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our high time resolution observations of individual giant pulses in the Crab pulsar show that both the time and frequency signatures of the interpulse are distinctly different from those of the main pulse. Giant main pulses can occasionally be resolved into short-lived, relatively narrow-band nanoshots. We believe these nanoshots are produced by soliton collapse in strong plasma turbulence. Giant interpulses are very different. Their dynamic spectrum contains narrow, microsecond-long emission bands. We have detected these proportionately spaced bands from 4.5 to 10.5 GHz. The bands cannot easily be explained by any current theory of pulsar radio emission; we speculate on possible new models.

قيم البحث

اقرأ أيضاً

121 - J. A. Eilek , T. H. Hankins 2016
We review our high-time-resolution radio observations of the Crab pulsar and compare our data to a variety of models for the emission physics. The Main Pulse and the Low-Frequency Interpulse come from regions somewhere in the high-altitude emission z ones (caustics) that also produce pulsed X-ray and gamma-ray emission. Although no emission model can fully explain these two components, the most likely models suggest they arise from a combination of beam-driven instabilities, coherent charge bunching and strong electromagnetic turbulence. Because the radio power fluctuates on a wide range of timescales, we know the emission zones are patchy and dynamic. It is tempting to invoke unsteady pair creation in high-altitude gaps as source of the variability, but current pair cascade models cannot explain the densities required by any of the likely models. It is harder to account for the mysterious High-Frequency Interpulse. We understand neither its origin within the magnetosphere nor the striking emission bands in its dynamic spectrum. The most promising models are based on analogies with solar zebra bands, but they require unusual plasma structures which are not part of our standard picture of the magnetosphere. We argue that radio observations can reveal much about the upper magnetosphere, but work is required before the models can address all of the data.
288 - T. H. Hankins , J. A. Eilek 2007
Our high time resolution observations of individual pulses from the Crab pulsar show that both the time and frequency signatures of the interpulse are distinctly different from those of the main pulse. Main pulses can occasionally be resolved into sh ort-lived, relatively narrow-band nanoshots. We believe these nanoshots are produced by soliton collapse in strong plasma turbulence. Interpulses at centimeter wavelengths are very different. Their dynamic spectrum contains regular, microsecond-long emission bands. We have detected these bands, proportionately spaced in frequency, from 4.5 to 10.5 GHz. The bands cannot easily be explained by any current theory of pulsar radio emission; we speculate on possible new models.
55 - M.V. Popov 2006
The paper presents an analysis of dual-polarization observations of the Crab pulsar obtained on the 64-m Kalyazin radio telescope at 600 MHz with a time resolution of 250 ns. A lower limit for the intensities of giant pulses is estimated by assuming that the pulsar radio emission in the main pulse and interpulse consists entirely of giant radio pulses; this yields estimates of 100 Jy and 35 Jy for the peak flux densities of giant pulses arising in the main pulse and interpulse, respectively. This assumes that the normal radio emission of the pulse occurs in the precursor pulse. In this case, the longitudes of the giant radio pulses relative to the profile of the normal radio emission turn out to be the same for the Crab pulsar and the millisecond pulsar B1937+21, namely, the giant pulses arise at the trailing edge of the profile of the normal radio emission. Analysis of the distribution of the degree of circular polarization for the giant pulses suggests that they can consist of a random mixture of nanopulses with 100% circular polarization of either sign, with, on average, hundreds of such nanopulses within a single giant pulse.
64 - A. Jessner 2004
Individual giant radio pulses (GRPs) from the Crab pulsar last only a few microseconds. However, during that time they rank among the brightest objects in the radio sky reaching peak flux densities of up to 1500 Jy even at high radio frequencies. Our observations show that GRPs can be found in all phases of ordinary radio emission including the two high frequency components (HFCs) visible only between 5 and 9 GHz (Moffett & Hankins, 1996). This leads us to believe that there is no difference in the emission mechanism of the main pulse (MP), inter pulse (IP) and HFCs. High resolution dynamic spectra from our recent observations of giant pulses with the Effelsberg telescope at a center frequency of 8.35 GHz show distinct spectral maxima within our observational bandwidth of 500 MHz for individual pulses. Their narrow band components appear to be brighter at higher frequencies (8.6 GHz) than at lower ones (8.1 GHz). Moreover, there is an evidence for spectral evolution within and between those structures. High frequency features occur earlier than low frequency ones. Strong plasma turbulence might be a feasible mechanism for the creation of the high energy densities of ~6.7 x 10^4 erg cm^-3 and brightness temperatures of 10^31 K.
Giant radio pulses (GRPs) are sporadic bursts emitted by some pulsars, lasting a few microseconds. GRPs are hundreds to thousands of times brighter than regular pulses from these sources. The only GRP-associated emission outside radio wavelengths is from the Crab Pulsar, where optical emission is enhanced by a few percent during GRPs. We observed the Crab Pulsar simultaneously at X-ray and radio wavelengths, finding enhancement of the X-ray emission by $3.8pm0.7%$ (a 5.4$sigma$ detection) coinciding with GRPs. This implies that the total emitted energy from GRPs is tens to hundreds of times higher than previously known. We discuss the implications for the pulsar emission mechanism and extragalactic fast radio bursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا