ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of spiral arm passages on the evolution of stellar clusters

310   0   0.0 ( 0 )
 نشر من قبل Mark Gieles
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Gieles




اسأل ChatGPT حول البحث

We study the effect of spiral arm passages on the evolution of star clusters on planar and circular orbits around the centres of galaxies. Individual passages with different relative velocity (V_drift) and arm width are studied using N-body simulations. When the ratio of the time it takes the cluster to cross the density wave to the crossing time of stars in the cluster is much smaller than one, the energy gain of stars can be predicted accurately in the impulsive approximation. When this ratio is much larger than one, the cluster is heated adiabatically and the net effect of heating is largely damped. For a given duration of the perturbation, this ratio is smaller for stars in the outer parts of the cluster compared to stars in the inner part. The cluster energy gain due to perturbations of various duration as obtained from our N-body simulations is in good agreement with theoretical predictions taking into account the effect of adiabatic damping. Perturbations by the broad stellar component of the spiral arms on a cluster are in the adiabatic regime and, therefore, hardly contribute to the energy gain and mass loss of the cluster. We consider the effect of crossings through the high density shocked gas in the spiral arms, which result in a more impulsive compression of the cluster. The time scale of disruption is shortest at ~0.8-0.9 R_CR since there V_drift is low. This location can be applicable to the solar neighbourhood. In addition, the four-armed spiral pattern of the Milky Way makes spiral arms contribute more to the disruption of clusters than in a similar but two-armed galaxy. Still, the disruption time due to spiral arm perturbations there is about an order of magnitude higher than what is observed for the solar neighbourhood.[ABRIDGED]

قيم البحث

اقرأ أيضاً

149 - A.D. Mackey 2007
We present the results of realistic N-body modelling of massive star clusters in the Magellanic Clouds, aimed at investigating a dynamical origin for the radius-age trend observed in these systems. We find that stellar-mass black holes, formed in the supernova explosions of the most massive cluster stars, can constitute a dynamically important population. If a significant number of black holes are retained (here we assume complete retention), these objects rapidly form a dense core where interactions are common, resulting in the scattering of black holes into the cluster halo, and the ejection of black holes from the cluster. These two processes heat the stellar component, resulting in prolonged core expansion of a magnitude matching the observations. Significant core evolution is also observed in Magellanic Cloud clusters at early times. We find that this does not result from the action of black holes, but can be reproduced by the effects of mass-loss due to rapid stellar evolution in a primordially mass segregated cluster.
A study of the stellar population of the M31 spiral arm around OB association A24 was carried out based on the photometric data obtained from deep V and JHK imaging. The luminosity function was obtained for -7 <~ Mbol <~ -3.5 by applying the extincti on correction corresponding to Av=1 and the bolometric correction BC(K) as an empirical function of (J-K)o. In comparing the observed color-luminosity diagrams with semitheoretical isochrones modified for the dust-shell effects, we found the young population of t <~ 30 Myr with supergiants of Mbol <~ -5, the bulk of the intermediate-age population of t ~ 0.2 - 2.5 Gyr with bright asymptotic giant branch (AGB) stars of -5 <~ Mbol <~ -4, and old populations of t ~> 3 Gyr with AGB and red giant branch (RGB) stars of Mbol ~> -4. The average star formation rate was estimated to be ~1.8x10^4 M_o/Myr and ~0.7x10^4 M_o/Myr per deprojected disk area of 1 kpc^2 from the number density of B0 V stars around Mv=-4.0 (age ~10 Myr) and the number density of bright AGB stars around Mbol = -4.3 (age ~1 Gyr), respectively. A study of the local variation in the V and the J and H luminosity functions revealed a kind of anticorrelation between the population of the young component and that of the intermediate-age component when subdomains of ~100 pc scales were concerned. This finding suggests that the disk domain around the A24 area experienced a series of star formation episodes alternatively among different subdomains with a timescale of a few spiral passage periods. Brief discussions are given about the interstellar extinction and about the lifetimes of bright AGB stars and the highly red objects (HROs) in the same area.
The study of dynamical properties of Galactic open clusters is a fundamental prerequisite for the comprehension of their dissolution processes. In this work, we characterized 12 open clusters, namely: Collinder 258, NGC 6756, Czernik 37, NGC 5381, Ru precht 111, Ruprecht 102, NGC 6249, Basel 5, Ruprecht 97, Trumpler 25, ESO 129-SC32 and BH 150, projected against dense stellar fields. In order to do that, we employed Washington $CT_{1}$ photometry and GAIA DR2 astrometry, combined with a decontamination algorithm applied to the three-dimensional astrometric space of proper motions and parallaxes. From the derived membership likelihoods, we built decontaminated colour-magnitude diagrams, while structural parameters were obtained from King profiles fitting. Our analysis revealed that they are relatively young open clusters (log($t$ yr$^{-1}$) $sim7.3-8.6$), placed along the Sagittarius spiral arm, and at different internal dynamical stages. We found that the half-light radius to Jacobi radius ratio, the concentration parameter and the age to relaxation time ratio describe satisfactorily their different stages of dynamical evolution. Those relative more dynamically evolved open clusters have apparently experienced more important low-mass star loss.
We present a new theoretical population synthesis model (the Galaxy Model) to examine and deal with large amounts of data from surveys of the Milky Way and to decipher the present and past structure and history of our own Galaxy. We assume the Galaxy to consist of a superposition of many composite stellar populations belonging to the thin and thick disks, the stellar halo and the bulge, and to be surrounded by a single dark matter halo component. A global model for the Milky Ways gravitational potential is built up self-consistently with the density profiles from the Poisson equation. In turn, these density profiles are used to generate synthetic probability distribution functions (PDFs) for the distribution of stars in colour-magnitude diagrams (CMDs). Finally, the gravitational potential is used to constrain the stellar kinematics by means of the moment method on a (perturbed)-distribution function. Spiral arms perturb the axisymmetric disk distribution functions in the linear response framework of density-wave theory where we present an analytical formula of the so-called `reduction factor using Hypergeometric functions. Finally, we consider an analytical non-axisymmetric model of extinction and an algorithm based on the concept of probability distribution function to handle colour magnitude diagrams with a large number of stars. A genetic algorithm is presented to investigate both the photometric and kinematic parameter space. This galaxy model represents the natural framework to reconstruct the structure of the Milky Way from the heterogeneous data set of surveys such as Gaia-ESO, SEGUE, APOGEE2, RAVE and the Gaia mission.
We use N-body simulations to explore the influence of orbital eccentricity on the dynamical evolution of star clusters. Specifically we compare the mass loss rate, velocity dispersion, relaxation time, and the mass function of star clusters on circul ar and eccentric orbits. For a given perigalactic distance, increasing orbital eccentricity slows the dynamical evolution of a cluster due to a weaker mean tidal field. However, we find that perigalactic passes and tidal heating due to an eccentric orbit can partially compensate for the decreased mean tidal field by energizing stars to higher velocities and stripping additional stars from the cluster, accelerating the relaxation process. We find that the corresponding circular orbit which best describes the evolution of a cluster on an eccentric orbit is much less than its semi-major axis or time averaged galactocentric distance. Since clusters spend the majority of their lifetimes near apogalacticon, the properties of clusters which appear very dynamically evolved for a given galactocentric distance can be explained by an eccentric orbit. Additionally we find that the evolution of the slope of the mass function within the core radius is roughly orbit-independent, so it could place additional constraints on the initial mass and initial size of globular clusters with solved orbits. We use our results to demonstrate how the orbit of Milky Way globular clusters can be constrained given standard observable parameters like galactocentric distance and the slope of the mass function. We then place constraints on the unsolved orbits of NGC 1261,NGC 6352, NGC 6496, and NGC 6304 based on their positions and mass functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا