ترغب بنشر مسار تعليمي؟ اضغط هنا

Mrk 609: resolving the circum-nuclear structure with near-infrared integral field spectroscopy

231   0   0.0 ( 0 )
 نشر من قبل Jens Zuther
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present first results of near infrared J and H+K ESO-SINFONI integral field spectroscopy of the composite starburst/Seyfert 1.8 galaxy Mrk 609. The data were taken during the science verification period of SINFONI. We aim to investigate the morphology and excitation conditions within the central 2 kpc. Additional Nobeyama 45 m CO(1-0) data are presented, which we used to estimate the molecular gas mass. The source was selected from a sample of adaptive optics suitable, SDSS/ROSAT based, X-ray bright AGN with redshifts of 0.03 < z < 1. This sample allows for a detailed study of the NIR properties of the nuclear and host environments with high spectral and spatial resolution. Our NIR data reveal a complex emission-line morphology, possibly associated with a nuclear bar seen in the reconstructed continuum images. The detections of [SiVI] and a broad Pa alpha component are clear indicators for the presence of an accreting super-massive black hole at the center of Mrk 609. In agreement with previous observations we find that the circum-nuclear emission is not significantly extincted. The analysis of the high angular resolution rotational-vibrational molecular hydrogen and forbidden [FeII] emission reveals a LINER character of the nucleus. The large H_2 gas mass deduced from the CO(1-0) observation provides the fuel needed to feed the starburst and Seyfert activity in Mrk 609. High angular resolution imaging spectroscopy provides an ideal tool to resolve the nuclear and starburst contribution in active galaxies. We show that Mrk 609 exhibits LINER features, that appear to be hidden in larger aperture visible/NIR spectra.



قيم البحث

اقرأ أيضاً

401 - X. Mazzalay 2012
We present adaptive optics-assisted J- and K-band integral field spectroscopy of the inner 300 x 300 pc of the Seyfert 2 galaxy NGC1068. The data were obtained with the Gemini NIFS integral field unit spectrometer, which provided us with high-spatial and -spectral resolution sampling. The wavelength range covered by the observations allowed us to study the [CaVIII], [SiVI], [SiVII], [AlIX] and [SIX] coronal-line (CL) emission, covering ionization potentials up to 328 eV. The observations reveal very rich and complex structures, both in terms of velocity fields and emission-line ratios. The CL emission is elongated along the NE-SW direction, with the stronger emission preferentially localized to the NE of the nucleus. CLs are emitted by gas covering a wide range of velocities, with maximum blueshifts/redshifts of ~ -1600/1000 km/s. There is a trend for the gas located on the NE side of the nucleus to be blueshifted while the gas located towards the SW is redshifted. The morphology and the kinematics of the near-infrared CLs are in very good agreement with the ones displayed by low-ionization lines and optical CLs, suggesting a common origin. The line flux distributions, velocity maps, ionization structure (traced by the [SiVII]/[SiVI] emission-line ratio) and low ionization emission-line ratios (i.e., [FeII]/Pabeta and [FeII]/[PII]) suggest that the radio jet plays an important role in the structure of the coronal line region of this object, and possibly in its kinematics.
460 - David S. N. Rupke 2011
The quasi-stellar object (QSO)/merger Mrk 231 is arguably the nearest and best laboratory for studying QSO feedback. It hosts several outflows, including broad-line winds, radio jets, and a poorly-understood kpc scale outflow. In this Letter, we pres ent integral field spectroscopy from the Gemini telescope that represents the first unambiguous detection of a wide-angle, kpc scale outflow from a powerful QSO. Using neutral gas absorption, we show that the nuclear region hosts an outflow with blueshifted velocities reaching 1100 km/s, extending 2-3 kpc from the nucleus in all directions in the plane of the sky. A radio jet impacts the outflow north of the nucleus, accelerating it to even higher velocities (up to 1400 km/s). Finally, 3.5 kpc south of the nucleus, star formation is simultaneously powering an outflow that reaches more modest velocities of only 570 km/s. Blueshifted ionized gas is also detected around the nucleus at lower velocities and smaller scales. The mass and energy flux from the outflow are >~2.5 times the star formation rate and >~0.7% of the active galactic nucleus luminosity, consistent with negative feedback models of QSOs.
We investigate the 2D excitation structure of the ISM in a sample of LIRGs and Seyferts using near-IR IFS. This study extends to the near-IR the well-known optical and mid-IR emission line diagnostics used to classify activity in galaxies. Based on t he spatially resolved spectroscopy of prototypes, we identify in the [FeII]1.64/Br$gamma$ - H_2 1-0S(1)/Br$gamma$ plane regions dominated by the different heating sources, i.e. AGNs, young MS massive stars, and evolved stars i.e. supernovae. The ISM in LIRGs occupy a wide region in the near-IR diagnostic plane from -0.6 to +1.5 and from -1.2 to +0.8 (in log units) for the [FeII]/Br$gamma$ and H_2/Br$gamma$ line ratios, respectively. The corresponding median(mode) ratios are +0.18(0.16) and +0.02(-0.04). Seyferts show on average larger values by factors ~2.5 and ~1.4 for the [FeII]/Br$gamma$ and H_2/Br$gamma$ ratios, respectively. New areas and relations in the near-IR diagnostic plane are defined for the compact, high surface brightness regions dominated by AGN, young ionizing stars, and SNe explosions, respectively. In addition, the diffuse regions affected by the AGN radiation field cover an area similar to that of Seyferts, but with high values in [FeII]/Br$gamma$ that are not as extreme. The extended, non-AGN diffuse regions cover a wide area in the diagnostic diagram that overlaps that of individual excitation mechanisms (i.e. AGN, young stars, and SNe), but with its mode value to that of the young SF clumps. This indicates that the excitation conditions of the diffuse ISM are likely due to a mixture of the different ionization sources. The integrated line ratios in LIRGs show higher excitation conditions i.e. towards AGNs, than those measured by the spatially resolved spectroscopy. If this behaviour is representative, it would have clear consequences when classifying high-z, SF galaxies based on their near-IR integrated spectra.
56 - Mark Swinbank 2005
We present optical and near-infrared integral field spectroscopy of the SCUBA galaxy SMM J163650.43+405734.5 (ELAIS N2 850.4) at z=2.385. We combine Ly-alpha and H-alpha emission line maps and velocity structure with high resolution HST ACS and NICMO S imaging to probe the complex dynamics of this vigorous star-burst galaxy. The imaging data shows a complex morphology, consisting of at least three components separated by ~1 (8kpc) in projection. When combined with the H-alpha velocity field from UKIRT UIST IFU observations we identify two components whose redshifts are coincident with the systemic redshift, measured from previous CO observations, one of which shows signs of AGN activity. A third component is offset by 220+/-50km/s from the systemic velocity. The total star formation rate of the whole system (estimated from the narrow-line H-alpha and uncorrected for reddening) is 340+/-50Mo/yr. The Ly-alpha emission mapped by the GMOS IFU covers the complete galaxy and is offset by +270+/-40km/s from the systemic velocity. This velocity offset is comparable to that seen in rest-frame UV-selected galaxies at similar redshifts and usually interpreted as a star-burst driven wind. The extended structure of the Ly-alpha emission suggests that this wind is not a nuclear phenomenon, but is instead a galactic scale outflow. Our observations suggest that the vigorous activity in N2 850.4 is arising as a result of an interaction between at least two dynamically-distinct components, resulting in a strong starburst, a starburst-driven wind and actively-fuelled AGN activity. [abridged]
123 - M. Teodoro 2008
This work presents the first integral field spectroscopy of the Homunculus nebula around Eta Carinae in the near-infrared spectral region (J band). We confirmed the presence of a hole on the polar region of each lobe, as indicated by previous near-IR long-slit spectra and mid-IR images. The holes can be described as a cylinder of height (i.e. the thickness of the lobe) and diameter of 6.5 and 6.0x10^{16} cm, respectively. We also mapped the blue-shifted component of He I 10830 seen towards the NW lobe. Contrary to previous works, we suggested that this blue-shifted component is not related to the Paddle but it is indeed in the equatorial disc. We confirmed the claim of Smith (2005) and showed that the spatial extent of the Little Homunculus matches remarkably well the radio continuum emission at 3 cm, indicating that the Little Homunculus can be regarded as a small HII region. Therefore, we used the optically-thin 1.3 mm radio flux to derive a lower limit for the number of Lyman-continuum photons of the central source in Eta Car. In the context of a binary system, and assuming that the ionising flux comes entirely from the hot companion star, the lower limit for its spectral type and luminosity class ranges from O5.5 III to O7 I. Moreover, we showed that the radio peak at 1.7 arcsec NW from the central star is in the same line-of-sight of the `Sr-filament but they are obviously spatially separated, while the blue-shifted component of He I 10830 may be related to the radio peak and can be explained by the ultraviolet radiation from the companion star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا