ﻻ يوجد ملخص باللغة العربية
We compare N-body simulations of isolated galaxies performed in both frameworks of modified Newtonian dynamics (MOND) and Newtonian gravity with dark matter (DM). We have developed a multigrid code able to efficiently solve the modified Poisson equation derived from the Lagrangian formalism AQUAL. We take particular care of the boundary conditions that are a crucial point in MOND. The 3-dimensional dynamics of initially identical stellar discs is studied in both models. In Newtonian gravity the live DM halo is chosen to fit the rotation curve of the MOND galaxy. For the same value of the Toomre parameter (Q_T), galactic discs in MOND develop a bar instability sooner than in the DM model. In a second phase the MOND bars weaken while the DM bars continue to grow by exchanging angular momentum with the halo. The bar pattern speed evolves quite differently in the two models: there is no dynamical friction on the MOND bars so they keep a constant pattern speed while the DM bars slow down significantly. This affects the position of resonance like the corotation and the peanut. The peanut lobes in the DM model move radially outward while they keep the same position in MOND. Simulations of (only stellar) galaxies of different types on the Hubble sequence lead to a statistical bar frequency that is closer to observations for the MOND than the DM model.
The stability of spiral galaxies is compared in modified Newtonian Dynamics (MOND) and Newtonian dynamics with dark matter (DM). We extend our previous simulations that involved pure stellar discs without gas, to deal with the effects of gas dissipat
In modified gravity theories that seek to explain cosmic acceleration, dwarf galaxies in low density environments can be subject to enhanced forces. The class of scalar-tensor theories, which includes f(R) gravity, predict such a force enhancement (m
We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field.
We investigate the evolution of the Tully-Fisher relation out to z=1 with 137 emission-line galaxies in the field that display a regular rotation curve. They follow a linear trend with lookback time being on average brighter by 1.1Bmag and 60% smalle
We quantify the evolution of the spiral, S0 and elliptical fractions in galaxy clusters as a function of cluster velocity dispersion ($sigma$) and X-ray luminosity ($L_X$) using a new database of 72 nearby clusters from the WIde-Field Nearby Galaxy-c