ترغب بنشر مسار تعليمي؟ اضغط هنا

Signal Search and Reconstruction by a Trend Filtering Algorithm

46   0   0.0 ( 0 )
 نشر من قبل Geza Kovacs
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present additional tests of our algorithm aimed at filtering out systematics due to data reduction and instrumental imperfections in time series obtained by ensemble photometry. Signal detection efficiency is demonstrated, and a method of decreasing the false alarm probability is presented. Including the recently discovered transiting extrasolar planet HAT-P-1, we show various examples on the signal reconstruction capability of the method.


قيم البحث

اقرأ أيضاً

67 - G. Kovacs , G. A. Bakos 2008
During the past few years the Trend Filtering Algorithm (TFA) has become an important utility in filtering out time-dependent systematic effects in photometric databases for extrasolar planetary transit search. Here we present the extension of the me thod to multiperiodic signals and show the high efficiency of the signal detection over the direct frequency analysis on the original database derived by todays standard methods (e.g., aperture photometry). We also consider the (iterative) signal reconstruction that involves the proper extraction of the systematics. The method is demonstrated on the database of fields observed by the HATNet project. A preliminary variability statistics suggests incidence rates between 4 and 10% with many (sub)mmag amplitude variables.
An algorithm that initializes a quantum register to a state with a specified energy range is given, corresponding to a quantum implementation of the celebrated Feit-Fleck method. This is performed by introducing a nondeterministic quantum implementat ion of a standard spectral filtering procedure combined with an apodization technique, allowing for accurate state initialization. It is shown that the implementation requires only two ancilla qubits. A lower bound for the total probability of success of this algorithm is derived, showing that this scheme can be realized using a finite, relatively low number of trials. Assuming the time evolution can be performed efficiently and using a trial state polynomially close to the desired states, it is demonstrated that the number of operations required scales polynomially with the number of qubits. Tradeoffs between accuracy and performance are demonstrated in a simple example: the harmonic oscillator. This algorithm would be useful for the initialization phase of the simulation of quantum systems on digital quantum computers.
Decomposing complex time series into trend, seasonality, and remainder components is an important task to facilitate time series anomaly detection and forecasting. Although numerous methods have been proposed, there are still many time series charact eristics exhibiting in real-world data which are not addressed properly, including 1) ability to handle seasonality fluctuation and shift, and abrupt change in trend and reminder; 2) robustness on data with anomalies; 3) applicability on time series with long seasonality period. In the paper, we propose a novel and generic time series decomposition algorithm to address these challenges. Specifically, we extract the trend component robustly by solving a regression problem using the least absolute deviations loss with sparse regularization. Based on the extracted trend, we apply the the non-local seasonal filtering to extract the seasonality component. This process is repeated until accurate decomposition is obtained. Experiments on different synthetic and real-world time series datasets demonstrate that our method outperforms existing solutions.
102 - Gioacchino Ranucci 2005
The experimental issue of the search for new particles of unknown mass poses the challenge of exploring a wide interval to look for the usual signatures represented by excess of events above the background. A side effect of such a broad range quest i s that the traditional significance calculations valid for signals of known location are no more applicable when such an information is missing. In this note the specific signal search approach via observation windows sliding over the range of interest is considered; in the assumptions of known background and of fixed width of the exploring windows the statistical implications of such a search scheme are described, with special emphasis on the correct significance assessment for a claimed discovery.
The frequency of a web search keyword generally reflects the degree of public interest in a particular subject matter. Search logs are therefore useful resources for trend analysis. However, access to search logs is typically restricted to search eng ine providers. In this paper, we investigate whether search frequency can be estimated from a different resource such as Wikipedia page views of open data. We found frequently searched keywords to have remarkably high correlations with Wikipedia page views. This suggests that Wikipedia page views can be an effective tool for determining popular global web search trends.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا