ﻻ يوجد ملخص باللغة العربية
We introduce a set of stellar models for massive stars whose evolution has been affected by mass transfer in a binary system, at a range of metallicities. As noted by other authors, the effect of such mass transfer is frequently more than just rejuvenation. We find that, whilst stars with convective cores which have accreted only H-rich matter rejuvenate as expected, those stars which have accreted He-rich matter (for example at the end stages of conservative mass transfer) evolve in a way that is qualitatively similar to rejuvenated stars of much higher metallicity. Thus the effects of non-conservative evolution depend strongly on whether He-rich matter is amongst the portion accreted or ejected. This may lead to a significant divergence in binary evolution paths with only a small difference in initial assumptions. We compare our models to observed systems and find approximate formulae for the effect of mass accretion on the effective age and metallicity of the resulting star.
Aims: We simulate the spectra of massive binaries at different phases of the orbital cycle, accounting for the gravitational influence of the companion star on the shape and physical properties of the stellar surface. Methods: We used the Roche poten
In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shock
More than half of stars reside in binary or multiple star systems and many planets have been found in binary systems. From theoretical point of view, however, whether or not the planetary formation proceeds in a binary system is a very complex proble
Context. Most massive stars are in binary or multiple systems. Several massive stars have been detected as doublelined spectroscopic binaries and among these, the OWN Survey has detected a non-negligible number whose components show very different sp
High-resolution radio observations have revealed that non-thermal radio emission in WR stars arises where the stellar wind of the WR star collides with that of a binary companion. These colliding-wind binary (CWB) systems offer an important laborator